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Abstract

In order to model fundamental cell biological processes including the transcrip-

tion, translation, and nuclear membrane transport of biological molecules within

a eukaryotic cell it is necessary to be able to approximate the stochastic reaction

and diffusion of a small number of molecules in the complex three dimensional

geometry of a cell. For this reason a method is developed that incorporates

diffusion and active transport of chemicals in complex geometries into stochas-

tic chemical kinetics simulations. Systems undergoing stochastic reaction and

diffusion are modeled using a discrete state master equation. It is shown how

the jump rates for spatial movement between mesh cells can be derived from

the discretization weights of embedded boundary methods. Spatial motion is

modeled as first order reactions between neighboring mesh cells using the pre-

determined jump rates. Individual realizations of the master equation can be

created by the Gillespie Method, allowing numerical simulation of the underly-

ing stochastic process. We investigate the numerical convergence properties of

both the underlying embedded boundary methods, and the reaction–diffusion

master equation model. Several continuum limits of the reaction–diffusion mas-

ter equation are investigated. In addition, a proposed model for the problem of

locating a point binding site by diffusive motion is studied. This problem is an
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idealization of one proposed mechanism by which gene regulatory proteins may

bind to specific sites on DNA. A model of transcription, translation, and nu-

clear membrane transport in eukaryotic cells is presented and solved using this

stochastic reaction-diffusion master equation approach in order to demonstrate

the feasibility of the method in studying fundamental spatially distributed cell

biological processes.
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Chapter 1

Introduction

1.1 Why Choose This Problem

Over the last several decades there has been an explosive growth in the ac-

cumulated knowledge in the field of molecular cell biology. From the human

genome project to the development of green fluorescent protein (GFP) markers

for real–time cellular protein imaging, an enormous amount of new biological

data has been generated. Much of this data is quantitative, allowing the de-

velopment of detailed mathematical models of cellular processes, where before

only qualitative models were possible. While working on extending to eukary-

otes a recent mathematical model [12] of prokaryotic gene expression, I began to

wonder how messenger ribonucleic acids (mRNAs) and proteins actually moved

from one location to another within biological cells, and whether this movement

could be important in the dynamics of cellular signaling networks. At the time,

it turned out that this was very much an open problem in the biological liter-

ature. Moreover, several biological and modeling papers had just shown that
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gene expression was in fact a very noisy, stochastic process [4],[33],[13] . I be-

came interested in studying the roles that stochasticity and spatial movement

could have in gene expression and cellular signaling. Looking at the existing

literature, I soon realized that there appeared to be no well-developed method

for modeling both stochastic and spatial dynamics of signaling networks within

biological cells.

It was known, biologically, that mRNAs and proteins primarily moved either

by diffusion, by active transport along microtubules and actin filaments, or by

some combination of the two. What was not known for most signaling networks

or the process of gene expression was which of these types of motion were

used. Moreover, it was unknown how important this spatial motion actually

was: did proteins and mRNA molecules simply diffuse quickly throughout the

cellular environment and effectively become well–mixed on the time scale of any

reaction events? If not, there were, and still are, many interesting questions

about how proteins and mRNAs localize to specific regions of cells and locate

specific binding targets. I was also curious about what effect the complex cellular

architecture had on the spatial movement of proteins and mRNA. To investigate

these problems, I began to work on developing a method for simulating the

spatial processes of diffusion and active transport that could also account for

the observed stochastic effects in certain signaling networks.
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1.2 Importance of small numbers and spatial

effects

Spatially homogeneous, deterministic mass–action kinetics is a standard model

for the interactions of proteins, genes, and mRNAs within cellular networks.

It assumes that the evolution of any chemical species can be represented by

a continuously–varying concentration representing the number of that species

within the cell divided by the cell volume. Fundamentally, however, the num-

bers of protein and mRNA molecules within cells are discrete integer variables.

The notion of a continuously–varying concentration is only well–defined for a

sufficiently large number of the molecules. Moreover, for systems in which spa-

tial effects are important the population number must not only be large within

the cell as a whole, but also locally within areas of interest. If the population

number is sufficiently small, stochastic effects can have a noticeable impact on

the behavior of the biological system.

The issue of stochasticity in gene expression was discussed in [4]. The au-

thors subsequently demonstrated numerically that the variation of cell fates

within a λ–phage infected population of bacterial cells can be explained as

arising from a stochastically driven gene expression switch [5]. The presence of

noise in prokaryotic transcription and translation was demonstrated experimen-

tally in both [13] and [33]. More recently, experimental results demonstrating

transcriptional noise in eukaryotic cells were presented in [7].

Spatial effects are present in many biological systems, and hence the spa-

tially uniform, or well–mixed, assumption will not always hold. Systems in

which spatial effects are known to play a role include Ash1 mRNA localiza-
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tion in budding yeast [1], morphogen gradients across egg–polarity genes in

Drosophila oocyte [1], and the synapse–specificity of long–term facilitation in

Aplysia [25]. The exact processes by which proteins and mRNAs move between

specific locations, and become localized, are not yet known definitively. Move-

ment is believed to be composed of a mixture of diffusion and various forms of

active transport. For example in [15], mRNA movement within the cytoplasm

was found to exhibit diffusive motion, “corralled” diffusive motion, and active,

directionally specific, transport. Probabilistic switching between these three

types of movement was observed in most cases. Moreover, the fraction of time

spent in each of the types of motion was found to differ depending on whether

the mRNA was destined to be localized or not.

1.3 Methods and Modeling Developed Here

As mentioned in the previous sections, there are two primary means by which

molecules move through biological cells: diffusion and active transport. Diffu-

sion can be incorporated into deterministic mass–action kinetics through the

use of reaction–diffusion partial differential equations. Molecular noise can be

accounted for through the use of stochastic chemical kinetics, but the usual

formulation of stochastic chemical kinetics assumes a spatially homogeneous

cellular space [20]. Methods for incorporating diffusion into stochastic chemical

kinetics are presented in [40] and [17], and go back as far as the model devel-

oped in [16]. In these methods, space is divided into a collection of equally–sized

mesh cells. The state of the chemical system is then given by the number of

each chemical species within each mesh cell. Using certain assumptions about
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the nature of the diffusion process and the chemical reaction mechanisms, a

reaction–diffusion master equation is then derived to give the probability of the

system being in a particular state. In [17] all transition rates between mesh cells

are identical, and formulas for the transition rates are calculated in this case.

In [40] a discussion of the continuum–limit for the first several moments of the

model is given, but no method is given for calculating the cell–based transition

rates. Note that, to our knowledge, no prescription has yet been given for de-

termining diffusive jump rates in complicated geometries, such as are present in

biological cells.

We develop here a stochastic reaction–diffusion active transport model for

mesh cells of arbitrary volume and shape, with varying spatial transition rates.

Later, we specialize to considering only embedded boundary Cartesian mesh

representations of the domain of interest. A method then is developed for cal-

culating diffusive and active transport transition rates between mesh cells within

a domain containing multiple complex boundaries embedded in the Cartesian

mesh. The development of a convergent diffusive approximation within com-

plex geometries is critical for use in individual (biological) cell models where

the large number of organelles and membranes could have a significant effect

on the overall dynamics of a chemical system. Diffusive transition rates are

systematically calculated from terms in an embedded boundary discretization

of the Fokker–Planck equation for a classically diffusing Brownian particle. We

expect the reaction–diffusion master equation to be such a discretization in the

case of no reactions and only one particle. Likewise, active transport rates are

calculated from an embedded boundary discretization of a Fokker-Planck equa-

tion representing an advective transport model of active transport. The notion
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of using a master equation as an approximation to a continuum equation was

used in [41] to obtain approximations of the Fokker-Planck equation for a sin-

gle particle moving in a one–dimensional potential. The master equation itself

has a special structure, requiring a constraint on the weights of the discretiza-

tion. Our method is found to conserve probability, and in the case of diffusion,

to satisfy detailed balance. The underlying embedded boundary discretization

converges at a rate between first and second order in practice. As an application

of the method, a model of transcription, translation, nuclear transport, and the

diffusive motion of expressed mRNAs and proteins within a two–dimensional

eukaryotic cell was developed and simulated.

We note that the method we develop is an Eulerian method, using an un-

derlying Cartesian mesh. We track the (integer) numbers of molecules of any

given type within the different cells of the mesh, but we do not resolve the

spatial location any more finely than that, not do we keep track of molecules

as individuals. When a molecule of type A leaves mesh cell i and enters mesh

cell j, this registers in our methodology as a decrease by one in the number

of molecules of type A in mesh cell i, and an increase by one in the number

of molecules of type A in mesh cell j. If there was more than one molecule of

type A in mesh cell i before this event occurred, we do not care or keep track

of which molecule of type A was the one that moved.

Other models of diffusive motion have been developed using Lagrangian

methods that track the movement of each individual molecule within the sys-

tem. For example, in [3] a Lagrangian method was developed for simulating

stochastic–reaction diffusion systems within biological cells. These methods

have the benefit of allowing exact local treatments of single–molecule diffusion,
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but they introduce other challenges, in particular, how to handle the interac-

tions between molecules. If the molecules are treated as points, they will never

actually collide, and so the rate of a bimolecular reaction has to be modeled as

a function of the distance between the molecules. It is not clear what function

to use, or where to put the reaction product(s) once a simulated reaction has

occurred.

reactions between particles, detection of particle collisions, and resolving

particle–geometry interactions.

We begin in Chapter 2 by describing the different types of spatial and

stochastic models that have previously been developed. We next give the formu-

lation of our stochastic–reaction–diffusion master equation. This is followed by a

discussion of our stochastic reaction–diffusion model’s connections to determin-

istic reaction–diffusion models, Brownian motion, and reaction–diffusion models

that track individual particles. We conclude by formulating a master equation

that incorporates active transport into our stochastic reaction–diffusion model.

In Chapter 3 we derive expressions for the diffusive and active transport

jump rates in the reaction–diffusion active transport model. We examine the

numerical convergence of time independent and time dependent solutions to the

discrete approximation to the Laplacian in two dimensions. From this approx-

imation the diffusion jump rates are derived. The chapter concludes with a

discussion of the convergence of our numerical method for approximating solu-

tions to the reaction–diffusion master equation.

Chapter 4 presents our spatial model for transcription, translation, and nu-

clear transport. We assume that mRNAs and proteins are allowed to freely

diffuse within the nucleus and cytoplasm, but must undergo a nuclear transport
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process to cross the nuclear membrane. The time evolution of one realization of

this model is demonstrated, and noisy oscillations in nuclear protein levels are

observed.

Finally, in Chapter 5 we discuss the problem of whether the reaction–

diffusion master equation model of the point binding interaction converges as

the numerical mesh size is reduced. In the biological gene expression model of

Chapter 4, binding to DNA is modeled as a chemical reaction involving a fixed

target site, assumed located within a single mesh cell, and a diffusing regulatory

protein. Several other methods by which this binding reaction can be modeled

are studied, as is the behavior of solutions to the reaction–diffusion master equa-

tion model for this point interaction as the numerical mesh size is varied. The

results we obtain do not give a good indication about whether the the master

equation point binding model converges as the numerical mesh size goes to zero.

We conclude with a discussion of an alternative continuum model of the point

binding interaction, involving diffusion in a hierarchy of dimensions, for which

we demonstrate a convergent discrete master equation approximation.
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Chapter 2

Background and Formulation

2.1 Introduction

In this section we describe several physical models for representing a system of

chemically reacting molecules. The models are presented in order from the most

macroscopic to the most microscopic, and collectively give a hierarchy of differ-

ent physical descriptions. Figure 2.1 shows an expanded hierarchy of physical

theories and models that can be used to study chemically reacting biological

systems. Quantum Mechanics provides the most microscopic and fundamental

representation of such systems. Unfortunately, it is severely limited with current

technology in both the number of interacting atoms and the timescale which can

be realistically simulated. To study more complicated problems, such as pro-

tein folding and protein–DNA interactions, Molecular Dynamics simulations are

commonly used [35]. Here, heuristic force fields for molecular interactions are

defined and then used in Newtonian Mechanics simulations. Typically, Gaus-

sian noise is added to the equations of motion to account for thermal forcing,

9



Stochastic Reaction−Diffusion

Quantum Mechanics

Molecular Dynamics

Deterministic
Reaction−Diffusion

Stochastic
Well−Mixed

Reaction

Deterministic Well−Mixed Reaction

Figure 2.1: Hierarchy of physical models useful in studying chemical reactions.

and simulations are performed in the over–damped regime. Recently, a number

of methods for incorporating Quantum Mechanical effects into Molecular Dy-

namics simulations have been developed. These techniques allow small subsets

of interactions to be resolved Quantum Mechanically as needed, see for exam-

ple [36]. As of 2002, state of the art Molecular Dynamics simulations could only

resolve at most microsecond timescales, and at most on the order of 100, 000

atoms [35], hence, a coarser description is needed to describe the interactions of

multiple biological molecules.

At a more macroscopic level than Molecular Dynamics, stochastic well–
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mixed chemical kinetics [21] [31], deterministic reaction–diffusion chemical ki-

netics, and deterministic well-mixed chemical kinetics (i.e. mass action), have

all been used to study the populations of chemical species within single cells.

Stochastic chemical kinetics assumes all chemicals are uniformly distributed,

i.e. well–mixed, at all times within the volume of interest. It describes the

evolution of the random variables for the number of each chemical species as a

functions of time. One benefit to this description is the ability to resolve accu-

rately fluctuations in the number of a given biochemical species, an important

effect in studying processes at the single cell level [7]. In contrast, deterministic

reaction–diffusion partial differential equations ignore fluctuations in the num-

ber of each chemical species, but instead resolve spatial gradients in chemical

concentration within the cell. Such gradients are present, and can play an im-

portant role in many biological signaling and transport processes [37] [27]. The

most macroscopic type of description typically considered is deterministic mass–

action chemical kinetics. Here, biological cells are assumed to be well–mixed

environments, where fluctuations in chemical concentrations can be ignored.

We begin this chapter by reviewing the previous three descriptions of chem-

ical processes at the cellular level, and then describe how both spatial and

stochastic effects can be combined in a more microscopic physical model,

stochastic reaction–diffusion chemical kinetics. This description, while more

macroscopic than Molecular Dynamics, provides a fundamentally more accu-

rate description of chemical processes within cells then the levels below it in

Figure 2.1. We discuss the relation between stochastic reaction–diffusion models

and the more macroscopic descriptions, while also motivating how one can com-

pletely specify diffusion related parameters of the stochastic reaction–diffusion
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model through its relation to single particle Brownian motion. Finally, we also

present an analogous method for describing stochastic chemical reactions in

advective flows, which we use as a model of active transport in biological cells.

2.2 Deterministic Mass–Action Chemical Ki-

netics

2.2.1 Well–Mixed Mass Action

Well–mixed mass action kinetics assumes that all chemical species can be de-

scribed by spatially uniform, continuously varying in time, chemical concen-

trations. Rates laws give the instantaneous change in concentration of each

chemical species per unit time, and lead to ordinary differential equations for

the time evolution of each chemical species’ concentration. These rate laws are

approximations to more exact quantum and statistical mechanical models of

the chemical system, and only in certain special cases can they be derived ex-

plicitly from these more exact representations. (See, for example, [14] and [29]

for derivations from quantum mechanical models, and [32] for derivations from

kinetic theory hard sphere models).

We now formulate the mathematical description of deterministic chemical

kinetics. The chemical system is assumed to be composed of L distinct chemical

species, with concentrations C l(t), l = 0 . . . L. The state vector for the chemical

system is then C(t) =
(

C1(t), . . . , CL(t)
)

. Later, when we consider stochastic

models, the state of the chemical system will be described by the number of

12



each chemical species,

M (t) =
(

M1(t), . . . ,ML(t)
)

= V C(t),

where V gives the total volume in which the chemical system is reacting. Assume

there are K possible reactions, with the function ãk(C(t)) denoting the rate of

the k’th reaction, k = 1 . . . K. The stoichiometry of the chemical reactions

are given by the vector νk =
(

ν1
k , . . . , ν

L
k

)

, defined to be the change in the

number of each chemical species that results from one occurrence of reaction

k (i.e., M (t) → M (t) + νk). Note that the change in concentration, per unit

time, of the l’th species due to the k’th reaction is then given by νl
kã

k(C(t)).

With these definitions, the total change in concentration, per unit time, of the

l’th chemical species is then given by the sum of the rates of change in the

concentration caused by all the different chemical reactions:

dC l

dt
(t) =

K
∑

k=1

νl
kã

k(C(t)). (2.1)

As a simple example, consider the bimolecular reaction A + B → C, with bi-

molecular rate constant α. Let l = 1 denote species A, l = 2 denote species

B, and l = 3 denote species C. There is only one reaction, so K = 1, with

ν1 = (−1,−1, 1), and ã1(A,B,C) = αAB. The equations of evolution for the

chemical system are then
dA

dt
= −αA(t)B(t)

dB

dt
= −αA(t)B(t)

dC

dt
= αA(t)B(t)

13



2.2.2 Reaction–Diffusion Models

Deterministic reaction–diffusion models incorporate diffusion, through Fick’s

law, into well–mixed mass action kinetics. It is assumed that all molecules

of each chemical species diffuse independently, and that all chemical reactions

are local. Reactions are pointwise, and generally only depend on the chemical

concentration of each species at that point. With these assumptions, the total

change in amount of a chemical species, within a region, per unit time is given

by the diffusive flux into the region added to the total change in the amount of

that species throughout the region cause by chemical reactions.

Denote by F l(x, t) the diffusive flux of chemical species l at the point x.

Fick’s Law states that

F l(x, t) = −Dl∇C l(x, t),

where Dl is the diffusion coefficient of species l. The total amount of chemical

species l will then satisfy a conservation equation within any arbitrary small

closed region, B,

d

dt

∫

B

C l(x, t) dx = −
∫

∂B

F l(x, t) · η(x, t) dS +

∫

B

K
∑

k=1

νl
ka

k(C(x, t),x) dx.

Here η(x) denotes the normal to the boundary of B. The first term on the right

hand side gives the total change in the amount of the l’th chemical species due

to diffusion into the region, while the second term gives the change in amount

within the region due to chemical reactions. Applying the divergence theorem,

d

dt

∫

B

C l(x, t) dx =

∫

B

Dl∆C l(x, t) dx +

∫

B

K
∑

k=1

νl
ka

k(C(x, t),x) dx.

Taking the time derivative inside the first integral, and noting that B is an

arbitrary region, we obtain the reaction–diffusion partial differential equations
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(PDEs),

∂C l

∂t
(x, t) = Dl∆C l(x, t) +

K
∑

k=1

νl
ka

k(C(x, t),x), l = 1 . . . L. (2.2)

2.2.3 Reaction–Diffusion Active Transport

Many cellular processes involve the active transport of molecules along micro-

tubules or actin filaments. A well–known example is the active transport of

vesicles along axonal microtubules in neurons [1]. We present here a model,

similar to the macroscopic one–dimensional transport model of [38], that in-

corporates active transport into the reaction–diffusion mass–action model. The

general process by which cargo is moved along microtubules is through bind-

ing to molecular motors, which can subsequently “walk” along the microtubule

towards a desired target. As the microtubule density is fairly high within eu-

karyotic cells, we model their effect as an underlying direction field along which

molecular motors can proceed with a specified velocity.

With these assumptions, let v(x) denote the velocity a given motor will

have at location x. The simplest model one could assume would be that the

microtubules form a specified direction field, φ(x), along which motors progress

with a fixed speed, v. Note that v may be positive or negative depending on

the direction a given motor walks along the microtubules. In this case, v(x) =

v φ(x). The system of reaction–advection–diffusion equations describing the

chemical concentrations would then be

∂C l(x, t)

∂t
+ ∇ ·

(

C l(x, t) vl(x)
)

= Dl∆C l +
K
∑

k=1

νl
k ãk(C(x, t),x), l = 1 . . . L.

(2.3)

In general, except for chemical species representing microtubule bound motor
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proteins or microtubule bound complexes of motor proteins and cargo, vl(x) ≡

0. Further, note that the model will include multiple chemical states for each

motor protein. For example, motors can be bound to cargo or unbound, and in

each of these states can either be bound to a microtubule and undergoing active

transport, or freely diffuse. These different states, and the reactions representing

transitions between them, are absorbed into the state vector, C(x, t), and the

reaction terms, ak(C(x, t),x). Note that no single equation in the coupled

system (2.3) will contain both the advective and diffusive terms, since any given

component of C(x, t) can only undergo one of the two types of motion.

2.3 Stochastic Chemical Kinetics

2.3.1 Physical Basis and Formulation

Consider a well–mixed chemical system in a finite closed volume V . That is:

the probability of a given particle of the system being in an arbitrary subre-

gion of volume dV is dV/V . Further, let each individual particle’s velocity be

a Maxwell–Boltzmann distributed random variable. With these assumptions

Gillespie showed in [21] that a chemical system can be represented as an integer

valued, continuous time Markov Process satisfying a master equation.

Let M (t) =
(

M1(t), . . . ,ML(t)
)

denote the state vector of the chemical

system. M l(t) will be the random variable representing the number of molecules

of chemical species l at time t. Define m =
(

m1, . . . ,mL
)

to be a possible value

of M(t). Denote by Sl the name of the l’th species. Assume there are K

possible reactions, with the function ak(m) giving the probability per unit time

of reaction k occurring when M(t) = m. For example, letting k label the
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unimolecular (first order) reaction Si → Sj, then ak(m) = α mi, where α is the

rate constant in units of number of occurrences of the reaction per molecule

of Si per unit time. Letting k′ denote the index of the bimolecular reaction

Si + Sj → Sn, where i &= j, then ak′

(m) = β mimj. Here β is the rate constant

in units of number of occurrences of the reaction per molecule of Si and per

molecule of Sj, per unit time. Note that if species i and j are the same, then

ak′

(m) = (β/2) mi(mi − 1). Let νk =
(

ν1
k , . . . , ν

L
k

)

be the change in M that

results from one occurrence of reaction k (i.e., M(t) → M (t)+νk). The integers
(

ν1
k , . . . , ν

L
k

)

define the stoichiometry of the k’th reaction. In the notation of

Appendix A, ak(m) = Wm+νk,m, assuming νi &= νk for all i &= k. (If two

or more reactions have identical stoichiometry, their rates are added to obtain

the corresponding transition rate W . Also, if there are no reactions leading

from state m′ to m, then Wm,m′ is zero.) Note that the νl
k may be positive or

negative integers (or zero). Then if

P (m, t) ≡ Prob{M (t) = m|M (0) = m0},

the master equation for the time evolution of the probability of the system will

be
dP (m)

dt
=

K
∑

k=1

(

ak(m − νk)P (m − νk) − ak(m)P (m)
)

, (2.4)

where we drop the argument t for notational convenience, and where P (m, 0) =

1 if m = m0 and zero otherwise. This is a coupled set of ODEs over all pos-

sible integer values of the components of the vector m. The derivation of this

equation follows from the results of Appendix A. We shall subsequently refer

to (2.4) as the chemical master equation. Assuming all the νk are distinct, in
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the notation of Appendix A the master equation is

dP (m)

dt
=

K
∑

k=1

(Wm,m−νk
P (m − νk) − Wm+νk,mP (m)) . (2.5)

In both (2.4) and (2.5) the first term in the sum corresponds to all possible

transitions into state m from some pre–state, m − νk, while the second term

corresponds to all possible transitions out of state m to m + νk.

2.3.2 Moments

We derive here the equations satisfied by the moments for an arbitrary compo-

nent of M , M l. To find this system of ODEs consider an arbitrary moment,

defined by
〈(

M l
)n〉 ≡

∑

M

(

M l
)n

P (M ).

In this equation, the sum is over all possible values of the state vector M . Note

that in many practical models M l has a finite maximum value; we assume that

P (m) is defined to be zero for values of ml larger than that maximum. An

equation for the time evolution of
(

M l
)n

can be obtained by multiplying (2.4)
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by
(

ml
)n

, and summing over all possible values of m. This gives

d
〈(

M l
)n〉

dt
=
∑

m

(

ml
)n dP (m)

dt
,

=
∑

m

K
∑

k=1

((

ml
)n

ak(m − νk)P (m − νk) −
(

ml
)n

ak(m)P (m)
)

,

=
K
∑

k=1

∑

m

((

ml + νl
k

)n −
(

ml
)n)

ak(m)P (m),

=
K
∑

k=1

∑

m

n−1
∑

l=0

(

n

l

)

(

νl
k

)n−l (
ml
)l

ak(m)P (m),

=
K
∑

k=1

n−1
∑

l=0

(

n

l

)

(

νl
k

)n−l
〈

(

M l
)l

ak(M )
〉

. (2.6)

Letting n = 1 in (2.6) we find that the mean of ml satisfies

d
〈

M l
〉

dt
=

K
∑

k=1

νl
k

〈

ak(M )
〉

. (2.7)

Setting n = 2 in (2.6), the second moment of M l satisfies

d
〈

(

M l
)2
〉

dt
=

K
∑

k=1

(

(

νl
k

)2 〈
ak(M )

〉

+ 2νl
k

〈

Ml a
k(M )

〉

)

.

A similar analysis shows that 〈Ml Ml′〉, satisfies

d 〈Ml Ml′〉
dt

=
K
∑

k=1

νl
k

〈

Ml′ a
k(M)

〉

+ νl′

k

〈

Ml a
k(M )

〉

+ νl
kν

l′

k

〈

ak(M )
〉

.

2.3.3 Relation to Deterministic Chemical Kinetics

We now consider the relationship between the deterministic mass action chem-

ical kinetic equations and the chemical master equation. Define C ≡ M/V , to

be the vector of random variables for the concentration of each species. Let ãk

denote the concentration dependent form of the rate ak. ãk and ak are related
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by ãk(c) = ak(V c)/V , and vice–versa ak(m) = ãk(m/V )V . Note that ãk(c) is

the expected number of occurrences of reaction k per unit volume per unit time

when the vector of concentrations is c. Using equation (2.7) the mean of C l,
〈

C l
〉

, then satisfies

d
〈

C l
〉

dt
=

K
∑

k=1

νl
k

〈

ãk(C)
〉

. (2.8)

If the averaging operation commutes with the functions ãk, then one obtains

the equations for classical deterministic chemical kinetics (see (2.1)),

d
〈

C l
〉

dt
=

K
∑

k=1

νl
k ãk
(

〈C〉
)

,

however, in general
〈

ãk(C)
〉

&= ãk
(

〈C〉
)

, unless ãk is linear. One does ex-

pect that asymptotically, as the population sizes become very large,
〈

ãk(C)
〉

≈

ãk
(

〈C〉
)

. For one discussion of the validity of this approximation see [22].

2.3.4 Gillespie Method

The number of the ODEs comprising the master equation are very large even

for simple chemical systems. Direct solution methods become impractical, so

that instead Monte Carlo methods are used. These methods create realizations

of the underlying stochastic process, M (t), governed by the master equation.

Statistics from many realizations can be used to calculate moments of M (t) and

the distribution, P (m, t). In [20] Gillespie presented two equivalent methods

that produce exact realizations of M(t). We shall describe only one of them

here.

Gillespie’s First Reaction Method is based on calculating a sample of the

random time of occurrence of each reaction independently, as if no other reac-

tions were possible. The reaction with the minimal time to its next occurrence
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is then executed, and the system state updated. This process is then repeated

until the simulation reaches the desired final time. In detail, let

p(τ, k|m, t) dτ ≡ Prob{ reaction k occurs in the interval [t + τ, t + τ + dτ) ,

ignoring that another reaction could occur first}.

Then in [20] it is shown that

p(τ, k|m, t) = ak(m) e−ak(m) τ . (2.9)

Knowing m at time t, for each reaction k, a time τk at which reaction k would

occur can be generated by inverting the probability distribution corresponding

to probability density (2.9). The time at which reaction k would occur is given

by t + τk, where

τk =
1

ak(m)
ln

1

rk
,

rk being a uniformly distributed random number in [0, 1]. The overall time–

evolution algorithm is then:

1. Initialize, t = 0, set initial molecule numbers, m = m0

2. Calculate ak(m), for all k

3. For each k, generate τk = (ln (1/rk)) /ak(m)

4. Execute the reaction, k′, with the smallest τk, update m := m + νk′

5. Set the time to, t := t + τk′

6. Return to 2.
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Optimized versions of Gillespie’s algorithms that substantially decrease the

computational work were developed by Gibson and Bruck [19]. Their Next Re-

action Method is equivalent to the First Reaction Method, but requires only

one random number per reaction event. By using a special data structure they

reduce finding the reaction with the minimum τk to a constant work operation,

and updating following a reaction to logarithmic work in the number of reac-

tions, K. For all subsequent Monte Carlo simulations discussed we use the Next

Reaction Method.

2.4 Stochastic Reaction–Diffusion Chemical

Kinetics

We now come to the new methodology proposed in this thesis, see also [23] our

forth coming paper. As mentioned in the introduction, the reaction–diffusion

master equation goes back to [16]. In this section we formulate the reaction–

diffusion master equation, and discuss its connections to several other types of

reaction–diffusion models. A new model for the stochastic reaction–diffusion

and active transport of molecules is also presented.

2.4.1 Mathematical Formulation

Let the domain of interest be a closed volume V . Divide the domain into a

collection of computational cells indexed by i = 1 . . . N . Assume that the size

of each cell can be chosen such that within each cell, independently, the master

equation formulation of chemical kinetics holds (see Section 2.3.1). In other
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words, the individual computational cells are small enough that each such cell

may be regarded as well mixed. Transitions of particles between cells are then

modeled as first order reactions.

Let M l
i (t) denote the random variable for the number of particles of species

l in computational cell i, l = 1 . . . L. Define M l(t) =
(

M l
1, . . . ,M

l
N

)T
to be the

spatial vector of species l, and M (t) =
(

M 1, . . . ,ML
)

to be the state matrix

of the system. As for the well–mixed case, let

P (m, t) ≡ Prob{M (t) = m|M (0) = m0},

where we have again dropped the dependence on t for convenience. Let M i(t) =
(

M1
i , . . . ,ML

i

)

, define el
i to be the matrix all of whose elements are zero except

for the element, (i, l) which is one, and let ei be the column vector which has

a 1 in its i’th entry and is 0 elsewhere. eiνk will denote the matrix formed

by the product of the column vector ei with the row vector νk. This matrix

will be zero everywhere except for the i’th row, which will be equal to νk.

It corresponds to the change in M (t) due to one occurrence of reaction k at

location i (i.e., M (t) → M (t) + eiνk). Let kl
ij denote the jump rate for each

individual molecule of the l’th chemical species into cell i from cell j, for i &= j.

Since diffusion is treated as a first order reaction, and since the molecules are

assumed to diffuse independently, the total probability per unit time at time t

for one molecule of species l to jump from cell j to cell i is kl
ijM

l
j(t).

The master equation for the time evolution of P (m, t) is then

dP (m)

dt
=

N
∑

i=1

N
∑

j=1

L
∑

l=1

(

kl
ij

(

ml
j + 1

)

P (m + el
j − el

i) − kl
jim

l
iP (m)

)

(2.10)

+
N
∑

i=1

K
∑

k=1

(

ak
i (mi − νk)P (m − eiνk) − ak

i (mi)P (m)
)

.
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This is a coupled set of ODEs over all possible integer values of the matrix

m. Notice the important point that the reaction probabilities per unit time,

ak
i (m), may now depend on spatial location. For example, in an eukaryotic cell

some reactions may occur only in the nucleus and others may occur only in the

cytoplasm.

Equation (2.10) is separated into two sums. The first term corresponds to

diffusive motion between cells i and j of a given species, l. The second is just

the components of the chemical master equation, but applied at each individual

cell. At this point no specification has been made as to where the rates kl
ij come

from, or what their values should be.

2.4.2 Relation to Deterministic Reaction–Diffusion

For deterministic reaction–diffusion, let C l(x, t) denote the concentration and

Dl the diffusion constant of the l’th species. Let ãk(C(x, t),x) denote the

spatially varying concentration dependent form of ak
i (see Section 2.3.1). Then

∂C l(x, t)

∂t
= Dl∆C l +

K
∑

k=1

νl
k ãk(C(x, t),x).

To see the relation to the stochastic formulation let C l
i(t) = M l

i (t)/Vi be the

random variable for the chemical concentration of species l, in cell i. Let

ãk
i denote the concentration dependent form of ak

i . ãk
i and ak

i are related by

ãk
i (c) = ak

i (Vic)/Vi, and vice–versa ak
i (m) = ãk

i (m/Vi)Vi. Since the reaction–

diffusion master equation has the same general form as the chemical master

equation (2.4), with the diffusive terms thought of as additional reactions, we
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may use equation (2.8) to determine the average of C l
i . We then find

d
〈

C l
i

〉

dt
=

N
∑

j=1

(

Vj

Vi
kl

ij

〈

C l
j

〉

− kl
ji

〈

C l
i

〉

)

+
K
∑

k=1

νl
k

〈

ãk
i (Ci)

〉

.

Suppose the rates kl
ij could be chosen so that the first term is a discretization of

Dl∆C l. The only difference between the deterministic reaction–diffusion PDEs

and the means of the stochastic formulation in the continuum limit would then

be the non–commutativity of the reaction terms with averaging; diffusion would

be identical.

2.4.3 Relation to Brownian Motion

Returning to the reaction–diffusion master equation (2.10), we expect that the

diffusive jump rates should be independent of the chemical reactions present

within a given chemical system. Therefore, we now consider a spatially dis-

tributed chemical system with no reactions. In this case, we expect each par-

ticle of each chemical species to independently undergo Brownian motion in

the continuum limit as the computational cell size approaches zero. Since, by

construction, the diffusive motion of each particle of each chemical species is in-

dependent in the reaction–diffusion master equation formulation, it is sufficient

to further restrict ourselves to a system consisting of only one chemical species

containing just one particle. With these choices, the reaction–diffusion master

equation reduces to

dP (m)

dt
=

N
∑

i=1

N
∑

j=1

kij (mj + 1) P (m + ej − ei) − kjimiP (m). (2.11)

Since M (t) is describing one particle, Mi(t) will be zero for all i except the

location at which the particle currently is. Let X(t) be the Brownian motion
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process of the particle. Then define

Qi(t) ≡ P (ei, t) ≈ Prob{X(t) ∈ Vi|X(0) = x0},

with ei denoting, as before, the unit vector along the i’th Cartesian coordinate

axis of IRN . With this definition, Qi(t) is the probability that the particle is in

the i’th computational cell. Letting m = ei, equation (2.11) implies

dQi

dt
=

N
∑

j=1

kij Qj − kji Qi. (2.12)

Define a probability density for the particle’s position by pi(t) ≡ Qi(t)/Vi. Then

pi satisfies

dpi

dt
=

N
∑

j=1

Vj

Vi
kij pj − kji pi. (2.13)

Again if the rates form a discretization of D∆p, for p the continuum single

particle density, then the continuum limit as cell size goes to zero would be

∂p

∂t
(x, t) = D∆p. (2.14)

This is the Fokker–Planck equation for a single classical Brownian particle.

With these continuum limits, and those of the previous section, constructing

an operator, Lh, of the form

(Lhp)i =
N
∑

j=1

Vj

Vi
kij pj − kji pi, (2.15)

where Lh → D∆ as h → 0, will determine the kij. (Here h represents the

maximum length scale associated with a computational cell). The diffusion

jump rates will then be kij, provided kij ≥ 0 (see Appendix A).
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2.4.4 Relation to Individual Particle Models

We now discuss the relation between the reaction–diffusion master equation

formulation (2.10) and reaction–diffusion models that track the position of each

individual molecule. We show how the reaction–diffusion master equation can be

thought of as a discrete approximation to a continuous Fock Space formulation.

Specifically, we relate equation (2.10) to the spatially continuous representation

studied in [11], equation (51), where a Fock Space representation is used to

model the reaction A + A → B. Instead of considering an arbitrary reaction–

diffusion system, for notational simplicity, we study the reaction A + B ! C.

We denote by k+ the forward reaction rate with units volume/time, and by k−

the reverse reaction rate with units time−1. The domain in which the reaction

may occur is taken to be the periodic box Ω = [−L/2, L/2)3.

We divide Ω into a standard Cartesian mesh, comprised of cubes of length h.

To ease the transition from the reaction–diffusion master equation to the Fock

Space representation we use a slightly different notation than in Section 2.4.1.

Let

i = (i1, i2, i3) ∈ I3

be the multi–index labeling a given mesh cell in Ω, with I3 representing the

three–dimensional index space. We denote by ai the number of molecules of

chemical species A at location i, and define

a = {ai | i ∈ I3}.

(We similarly define b, and c). The notation a + 1i, will represent a with one

added to ai. The diffusive jump rate for species A, from mesh cell j to mesh cell

i, is denoted by kA
ij, with kB

ij and kC
ij defined similarly. Using these definitions,
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the reaction–diffusion master equation can be rewritten as

dP

dt
(a, b, c, t) = (LhP + RhP ) (a, b, c, t), (2.16)

where the diffusion operator, Lh, is

(LhP ) (a, b, c, t) =

∑

i∈I3

∑

i′∈I3

(

[

kA
ii′ (ai′ + 1) P (a + 1i′ − 1i, b, c, t) − kA

i′i aiP (a, b, c, t)
]

+
[

kB
ii′ (bi′ + 1) P (a, b + 1i′ − 1i, c, t) − kB

i′i biP (a, b, c, t)
]

+
[

kC
ii′ (ci′ + 1) P (a, b, c + 1i′ − 1i, t) − kC

i′i ciP (a, b, c, t)
]

)

,

and the reaction operator, Rh, is defined as

(RhP ) (a, b, c, t) =

∑

i∈I3

(

k+(ai + 1)(bi + 1)

h3
P (a + 1i, b + 1i, c − 1i, t) −

k+aibi

h3
P (a, b, c, t)

+ k−(ci + 1)P (a − 1i, b − 1i, c + 1i, t) − k−ciP (a, b, c, t)

)

.

We now change variables to convert to the Fock Space representation. Denote

by a the total number of molecules of chemical species A within Ω, i.e.

a =
∑

i∈I3

ai.

(Define b and c similarly). We introduce a new set of variables, ja = (ja
1, . . . , j

a
a),

where ja
l ∈ I3 labels the mesh cell in which the l’th molecule of chemical species

A is located. Note that we use a as a superscript to indicate that there are a

total vectors, ja
l , that comprise the components of ja. Therefore, ja is a vector

of dimension 3a . With jb and jc defined similarly, let f (a,b,c)(ja, jb, jc, t) denote

the probability that at time t there are a particles of species A located within
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the mesh cells given by ja, b particles of species B located within the mesh cells

given by jb, and c particles of species C located within the mesh cells given by

jc. Note that the particles are assumed to be labeled, so that each ja
l always

represents the same particle.

The set of all permutations of the index vectors comprising ja is defined as

σ(ja) = {
(

ja
σ1

, . . . , ja
σa

)

| (σ1, . . . ,σa) is any permutation of (1, . . . , a)}.

(σ(jb) and σ(jc) are defined similarly). With these definitions, we symmetrize

f (a,b,c). Physically, this assumption means that molecules of the same chemical

species are assumed identical, and hence the order in which such molecules are

labeled is irrelevant. Note that this assumption is implicit in the reaction–

diffusion master equations (2.10) and (2.16) to begin with. The symmetrized

probability is defined as

F (a,b,c)(ja, jb, jc) =
1

a! b! c!

∑

j̃
a
∈σ(ja),

j̃
b
∈σ(jb),

j̃
c
∈σ(jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
). (2.17)

Dividing the right hand side by a! b! c! sets the state space of F (a,b,c) to be the

same as that of f (a,b,c). By this we mean that F (a,b,c)(ja, jb, jc) is defined for

all possible vectors, (ja, jb, jc) ∈ I3a × I3b × I3c. If this normalization were not

included, than F (a,b,c)(ja, jb, jc) would define a probability for a subset of these

values. Note that F (a,b,c) is symmetric under permutations of the components

of each vector ja, jb, and jc, so that for any permutation (σ1, . . . ,σa),

F (a,b,c)(ja
σ1

, . . . , ja
σa

, jb, jc) = F (a,b,c)(ja, jb, jc),

with similar relations holding for permutations in the components of jb and jc.

29



Using these definitions, the probability of being in any given state is then

completely specified by the collection of probabilities,

{F (a,b,c)(·, ·, ·) | a, b, and c take all possible values}.

The total probability that the system is in any state at all

∞
∑

a=0,
b=0,
c=0

∑

ja∈I3,
jb∈I3,
jc∈I3

F (a,b,c)(ja, jb, jc, t) = 1.

We now relate F (a,b,c) to the reaction–diffusion master equation. Consider any

state, (a, b, c), and any corresponding set of particle positions,
(

ja, jb, jc
)

such

that

ai = |{ja
l | ja

l = i, l = 1 . . . a}| .

(Similar relations holding for bi and ci). Here |·| denotes the cardinality of a

set. Denote by σ̃(ja) the set of all distinct permutations of the components of

ja. Note that σ̃(ja) ⊆ σ(ja), and by Theorem B.0.1 has cardinality

|σ̃(ja)| = a!
∏

i∈I3

1

ai!
. (2.18)

With σ̃(jb) and σ̃(jc) defined similarly, let

σ̃(ja, jb, jc) = σ̃(ja) × σ̃(jb) × σ̃(jc).

The cardinality of this set gives the total number of distinct permutations of

the components of
(

ja, jb, jc
)

that correspond to the state (a, b, c), assuming

ja precedes jb, and jb precedes jc. We subsequently denote this quantity by

Ca,b,c =
∣

∣σ̃(ja, jb, jc)
∣

∣ = a! b! c!
∏

i∈I3

1

ai! bi! ci!
.
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Several identities involving Ca,b,c will be subsequently be needed and are col-

lected here:

ai = (ai′ + 1)
Ca+1i′−1i ,b,c

Ca,b,c
, (2.19)

(

(a + 1) (b + 1)

c

)

ci = (ai + 1) (bi + 1)
Ca+1i ,b+1i ,c−1i

Ca,b,c
, (2.20)

(

c + 1

ab

)

aibi = (ci + 1)
Ca−1i ,b−1i ,c+1i

Ca,b,c
. (2.21)

The probability of being in any state (a, b, c), P (a, b, c, t), is equivalent to

the probability of being in any collection of particle positions within the set

σ̃(ja, jb, jc). (Assuming
(

ja, jb, jc
)

is one collection of particle positions that

are consistent with the state (a, b, c)). Therefore,

P (a, b, c, t) =
∑

“

j̃
a
,j̃

b
,j̃

c
”

∈σ̃(ja,jb,jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
, t).

Using Theorem B.0.2, and then the definition of F (a,b,c),

∑

“

j̃
a
,j̃

b
,j̃

c
”

∈σ̃(ja,jb,jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
) =

Ca,b,c

a! b! c!

∑

“

j̃
a
,j̃

b
,j̃

c
”

∈σ(ja,jb,jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
),

= Ca,b,c F (a,b,c)(ja, jb, jc).

Therefore,

P (a, b, c, t) = Ca,b,c F (a,b,c)(ja, jb, jc, t).

Plugging this expression into equation (2.16), and dividing by Ca,b,c, we obtain

the equations of evolution satisfied by F (a,b,c),

dF (a,b,c)

dt
(ja, jb, jc, t) =

(

L̃hF
(a,b,c) + R̃hF

(a,b,c)
)

(

ja, jb, jc, t
)

. (2.22)
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Before deriving L̃h and R̃h, we must first introduce new notations for remov-

ing and adding elements to a position vector, ja. Let ja \ ja
l denote ja with the

l’th particle removed, i.e.,

ja \ ja
l =

(

ja
1, . . . , j

a
l−1, j

a
l+1, . . . , j

a
a

)

.

Similarly, ja \ {i} will denote removing any one component of ja that has the

value i. Note that since we are only considering a symmetrized density, it does

not matter which component with the value i is removed. Adding an additional

particle to ja is denoted by ja ∪ ja
a+1, i.e.,

ja ∪ ja
a+1 =

(

ja
1, . . . , j

a
a, j

a
a+1

)

.

To add the specific value i for the new particle’s position, the notation ja ∪ {i}

is used.

With the preceding definitions, and using identity (2.19), the diffusion op-

erator, L̃h, is

(

L̃hF
(a,b,c)

)

(

ja, jb, jc, t
)

=

∑

i∈I3

∑

i′∈I3

(

[

kA
ii′ aiF

a,b,c
(

ja \ {i} ∪ {i′}, jb, jc
)

− kA
i′i aiF

(a,b,c)
(

ja, jb, jc
)]

+
[

kB
ii′ biF

(a,b,c)
(

ja, jb \ {i} ∪ {i′}, jc
)

− kB
i′i biF

(a,b,c)
(

ja, jb, jc
)]

+
[

kC
ii′ ciF

(a,b,c)
(

ja, jb, jc \ {i} ∪ {i′}
)

− kC
i′i ciF

(a,b,c)
(

ja, jb, jc
)]

)

.

(2.23)

Using the fact that ai gives the number of particle positions within ja that have

the value i,

kA
i′i aiF

(a,b,c)
(

ja, jb, jc
)

=
∑

l∈{l̃|ja

l̃
=i}

kA
i′ja

l

F (a,b,c)
(

ja, jb, jc
)

. (2.24)
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Similarly,

kA
ii′ aiF

(a,b,c)
(

ja \ {i} ∪ {i′}, jb, jc
)

=
∑

l∈{l̃|ja

l̃
=i}

kA
ja

l
i′F

(a,b,c)
(

ja
1, . . . , j

a
l−1, i

′, ja
l+1, . . . , j

a
a, j

b, jc
)

.

Finally, noting that for the previous two equations

∑

i∈I3

∑

l∈{l̃|ja

l̃
=i}

(·) =
a
∑

l=1

(·) , (2.25)

we find that equation (2.23) simplifies to

(

L̃hF
(a,b,c)

)

(

ja, jb, jc, t
)

=
∑

i′∈I3

(

a
∑

l=1

[

kA
ja

l
i′F

(a,b,c)
(

ja
1, . . . , j

a
l−1, i

′, ja
l+1, . . . , j

a
a, j

b, jc
)

− kA
i′ja

l

F (a,b,c)
(

ja, jb, jc
)

]

+
b
∑

l=1

[

kB
jb

l
i′
F (a,b,c)

(

ja, jb
1, . . . , j

b
l−1, i

′, jb
l+1, . . . , j

b
b, j

c
)

− kB
i′jb

l

F (a,b,c)
(

ja, jb, jc
)

]

+
c
∑

l=1

[

kC
jc

l
i′F

(a,b,c)
(

ja, jb, jc
1, . . . , j

c
l−1, i

′, jc
l+1, . . . , j

c
c

)

− kC
i′jc

l

F (a,b,c)
(

ja, jb, jc
)

]

)

.

(2.26)

Since the volume of each mesh cell is identical, the diffusion operators for each

particle of each of the three chemical species simply correspond to discretiza-

tions of the Laplacian scaled by the corresponding diffusion coefficient, as given

by equation (2.15). Denote by (∆h)
a
l the discrete Laplacian acting on the ja

l

coordinates. The total Laplacian acting on all of the ja coordinates is then

defined to be

∆a
h =

a
∑

l=1

(∆h)
a
l .
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With ∆b
h and ∆c

h definined similarly, equation (2.26) can be simplified to

(

L̃hF
(a,b,c)

)

(

ja, jb, jc, t
)

=
(

DA∆a
h + DB∆b

h + DC∆c
h

)

F (a,b,c)
(

ja, jb, jc, t
)

.

(2.27)

Using equations (2.20) and (2.21), the reaction operator, R̃h, is

(

R̃hF
(a,b,c)

)

(

ja, jb, jc
)

=

k+

h3

∑

i∈I3

[(

(a + 1) (b + 1)

c

)

ciF
(a+1,b+1,c−1)

(

ja ∪ {i}, jb ∪ {i}, jc \ {i}
)

− aibiF
(a,b,c)

(

ja, jb, jc
)

]

+k−
∑

i∈I3

[(

c + 1

ab

)

aibiF
(a−1,b−1,c+1)

(

ja \ {i}, jb \ {i}, jc ∪ {i}
)

− ciF
(a,b,c)

(

ja, jb, jc
)

]

.

(2.28)

Defining

δij =















1, i = j,

0, else,

then

aibiF
(a,b,c)

(

ja, jb, jc
)

=
∑

l∈{l′|ja

l′
=i}

b
∑

l̃=1

δja
l
jb

l̃

F (a,b,c)
(

ja, jb, jc
)

. (2.29)

Similarly,

aibiF
(a−1,b−1,c+1)

(

ja \ {i}, jb \ {i}, jc ∪ {i}
)

=

∑

l∈{l′|ja

l′
=i}

b
∑

l̃=1

δja
l
jb

l̃

F (a−1,b−1,c+1)
(

ja \ ja
l , j

b \ jb
l̃ , j

c ∪ ja
l

)

. (2.30)

We now expand each term in (2.28) into a sum over particle indexes using

equations (2.24), (2.29), and (2.30). Reusing equation (2.25), we obtain the
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final expression for the reaction operator,

(

R̃hF
(a,b,c)

)

(

ja, jb, jc
)

=

k+

h3

[(

(a + 1) (b + 1)

c

) c
∑

l=1

F (a+1,b+1,c−1)
(

ja ∪ jc
l , j

b ∪ jc
l , j

c \ jc
l

)

−
a
∑

l=1

b
∑

l̃=1

δja
l
jb

l̃

F (a,b,c)
(

ja, jb, jc
)

]

+k−

[(

c + 1

ab

) a
∑

l=1

b
∑

l̃=1

δja
l
jb

l̃

F (a−1,b−1,c+1)
(

ja \ ja
l , j

b \ jb
l̃ , j

c ∪ ja
l

)

−
c
∑

l=1

F (a,b,c)
(

ja, jb, jc
)

]

.

(2.31)

Note that the terms
(a + 1) (b + 1)

c

and
c + 1

ab

are due to the normalization of F (a,b,c) chosen in equation (2.17). If in equa-

tion (2.17) division by a! b! c! was left out, then the preceding terms would

disappear. We note that it is this later definition that is used in [11], equa-

tion (51).

Up to this point, our calculations have been exact and mathematically rig-

orous. We now speculate on the relation between the discrete reaction–diffusion

master equation (2.16) and the continuum, Fock Space formulation of [11]. This

is investigated by taking a formal continuum limit, h → 0, for the equation of

evolution of F (a,b,c), equation (2.22). We shall recover a final model of the same

type as equation (51) of [11]. Note, however, that the subsequent analysis is not
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mathematically rigorous, and does not necessarily give the mathematically cor-

rect continuum limit. (Assuming such a limit even exists). What the analysis

does show is the formal connection between the two formulations. Moreover, it

motivates the possibility of deriving from the more microscopic representation

used in [11] a discrete reaction–diffusion master equation type model.

We begin by rescaling the probability F (a,b,c)
(

ja, jb, jc
)

to obtain a probabil-

ity density, ρ(a,b,c)
h

(

qa, qb, qc
)

. Here,
(

qa, qb, qc
)

are taken to be spatial position

vectors that correspond to the cell centers of each box labeled by the components

of
(

ja, jb, jc
)

. We then define

ρ(a,b,c)
h

(

qa, qb, qc
)

≈
1

h3(a+b+c)
F (a,b,c)

(

ja, jb, jc
)

. (2.32)

With this definition, we are assuming that the probability density for a particle

to be at the center of a given mesh cell is approximately the probability of the

particle being in that mesh cell divided by the volume of the mesh cell. Plugging

this rescaling into equation (2.22), the equation of evolution for ρ(a,b,c)
h is then

dρ(a,b,c)
h

dt

(

qa, qb, qc
)

=
(

L̃hρ
(a,b,c)
h + R̂hρ

(a,b,c)
h

)

(

qa, qb, qc
)

. (2.33)

Note that the diffusion operator, L̃h, is unchanged from equation (2.22). This

is due to the linearity of the operator and that the operator does not change

particle numbers. In contrast to this, the reaction operator is altered giving the
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new operator,

(

R̃hρ
(a,b,c)
h

)

(

qa, qb, qc
)

=

k+

[(

(a + 1) (b + 1)

c

) c
∑

l=1

ρ(a+1,b+1,c−1)
h

(

qa ∪ qc
l , q

b ∪ qc
l , q

c \ qc
l

)

−
a
∑

l=1

b
∑

l̃=1

δh

(

qa
l − qb

l̃

)

ρ(a,b,c)
h

(

qa, qb, qc
)

]

+k−

[(

c + 1

ab

) a
∑

l=1

b
∑

l̃=1

δh

(

qa
l − qb

l̃

)

ρ(a−1,b−1,c+1)
h

(

qa \ qa
l , q

b \ qb
l̃
, qc ∪ qa

l

)

−
c
∑

l=1

ρ(a,b,c)
h

(

qa, qb, qc
)

]

.

(2.34)

Here we have introduced the rescaled function, δh

(

qa
l − qb

l̃

)

= h−3δja
l
jb

l̃

.

We now consider the formal continuum limit of (2.33). The particle posi-

tion vectors,
(

qa, qb, qc
)

, now become arbitrary points within the periodic box,

Ω. We assume that the discrete particle density, ρ(a,b,c)
h converges to a contin-

uum density, ρ(a,b,c). Denote by ∆a
l the continuum three–dimensional Laplacian,

acting on the l’th particle of species a. Letting,

∆a =
a
∑

l=1

∆a
l ,

we find that the diffusion operator, L̃h goes over into the continuum diffusion

operator

(

L̃ρ(a,b,c)
)

(

qa, qb, qc
)

=
(

DA∆a + DB∆b + DC∆c
)

ρ(a,b,c)
(

qa, qb, qc
)

. (2.35)

Assuming the discrete delta function, δh

(

qa
l − qb

l̃

)

, will converge to the con-

tinuum delta function, δ
(

qa
l − qb

l̃

)

, the reaction operator, R̃h, converges to the
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continuum reaction operator

(

R̃ρ(a,b,c)
)

(

qa, qb, qc
)

=

k+

[(

(a + 1) (b + 1)

c

) c
∑

l=1

ρ(a+1,b+1,c−1)
(

qa ∪ qc
l , q

b ∪ qc
l , q

c \ qc
l

)

−
a
∑

l=1

b
∑

l̃=1

δ
(

qa
l − qb

l̃

)

ρ(a,b,c)
(

qa, qb, qc
)

]

+k−

[(

c + 1

ab

) a
∑

l=1

b
∑

l̃=1

δ
(

qa
l − qb

l̃

)

ρ(a−1,b−1,c+1)
(

qa \ qa
l , q

b \ qb
l̃
, qc ∪ qa

l

)

−
c
∑

l=1

ρ(a,b,c)
(

qa, qb, qc
)

]

.

(2.36)

This definition can be rewritten in the form of the reaction operator from [11]

by defining the reaction rate terms,

α+

(

qa
l , q

b
l′ , q

c
l̃

)

= k+δ
(

qa
l − qb

l′
)

δ
(

qa
l − qc

l̃

)

,

α−
(

qa
l , q

b
l′ , q

c
l̃

)

= k−δ
(

qa
l − qb

l′
)

δ
(

qa
l − qc

l̃

)

.
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Equation (2.36) then becomes

(

R̃ρ(a,b,c)
)

(

qa, qb, qc
)

=
[(

(a + 1) (b + 1)

c

) c
∑

l=1

(

∫

Ω

∫

Ω

α+

(

q1, q2, q
c
l

)

ρ(a+1,b+1,c−1)
(

qa ∪ q1, q
b ∪ q2, q

c \ qc
l

)

dq1dq2

)

−
a
∑

l=1

b
∑

l̃=1

∫

Ω

α+

(

qa
l , q

b
l̃
, q3

)

ρ(a,b,c)
(

qa, qb, qc
)

dq3

]

+

[(

c + 1

ab

) a
∑

l=1

b
∑

l̃=1

(

∫

Ω

α−
(

qa
l , q

b
l̃
, q3

)

ρ(a−1,b−1,c+1)
(

qa \ qa
l , q

b \ qb
l̃
, qc ∪ q3

)

dq3

)

−
c
∑

l=1

∫

Ω

∫

Ω

α−
(

q1, q2, q
c
l

)

ρ(a,b,c)
(

qa, qb, qc
)

dq1dq2

]

.

(2.37)

The equation of evolution, equation (2.33), now becomes

dρ(a,b,c)

dt

(

qa, qb, qc
)

=
(

L̃ρ(a,b,c) + R̃ρ(a,b,c)
)

(

qa, qb, qc
)

. (2.38)

A key point about the preceding analysis is that the formulation given by the op-

erators (2.35) and (2.37) with equation (2.38) provides a possible initial model

of the chemical reaction A + B " C, for many different possible choices of α+

and α−. We are formally using point reactions to represent binding interactions,

but there is no reason that α+ could not allow binding within a certain binding

radius. Likewise, there is no reason that unbinding might not produce two parti-

cles a fixed separation apart. In fact, such interaction models are commonly used

in stochastic reaction–diffusion formulations that track individual particles [3].

While the preceding analysis is not rigorous, it does provide a mechanism to
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start with a more microscopic particle interaction model and then, through an

appropriate discretization mechanism, try to obtain a reaction–diffusion mas-

ter equation model. (By specifying the reaction interaction terms, and then

applying the preceding analysis in the reverse order).

With regards to the specific particle interactions derived above for α+ and

α−, we note that the critical steps in the derivation are the assumption that the

discrete delta functions go over into continuum delta functions, and that the

solutions to the discrete equations approach well-defined solutions to the con-

tinuum equations. Unfortunately, just giving a precise mathematical meaning

to the continuum equation is difficult because of the delta function coefficients.

The definition of solutions to PDEs with delta function coefficients has been

previously considered, but only in certain special cases has been made math-

ematically rigorous, see for example [2]. It is not clear that equation (2.38)

really is well–defined as formulated, let alone the limit of the discrete model.

While these issues are interesting possible research directions, they are beyond

the scope of our current discussion.

2.5 Stochastic Reaction–Diffusion Active

Transport Chemical Kinetics

We now extend the reaction–diffusion master equation (2.10) to incorporate

active transport along microtubules and actin filaments. The biological model

for active transport is the same as that presented in Section 2.2.3. Here, we

represent the advective motion of active transport as a system of first–order

reactions corresponding to jumps between mesh cells. Note the similarity of this
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approach to the representation of diffusion introduced above. Considering the

motion of a single microtubule–bound motor along the microtubule direction

field, we obtain a corresponding Fokker–Planck equation for the probability

density of the motor’s position. An appropriate discretization of this equation

then determines the jump rates to use in the reaction–diffusion active transport

master equation.

Denote by κl
ij the active transport jump rate for each individual molecule of

the l’th chemical species into cell i from cell j, for i &= j. Since active transport

is treated as a first order reaction, and since individual molecules are assumed to

move independently, the total probability at time t for one molecule of species l

to jump by active transport from cell j to i is κl
ijM

l
j(t). The reaction–diffusion

active transport master equation is then

dP (m)

dt
=

N
∑

i=1

N
∑

j=1

L
∑

l=1

(

kl
ij

(

ml
j + 1

)

P (m + el
j − el

i) − kl
jim

l
iP (m)

)

+
N
∑

i=1

N
∑

j=1

L
∑

l=1

(

κl
ij

(

ml
j + 1

)

P (m + el
j − el

i) − κl
jim

l
iP (m)

)

+
N
∑

i=1

K
∑

k=1

(

ak
i (mi − νk)P (m − eiνk) − ak

i (mi)P (m)
)

.

(2.39)

The only difference between equation (2.39) and equation (2.10) is the addition

of the middle line above, corresponding to motion by active transport. Note

that the form of the active transport term is the same as that for diffusion, just

with different specific jump rates.

The active transport jump rates, as was done for the diffusive jump rates,

can be determined through comparison to either the corresponding continuum

reaction–diffusion active transport model, or through comparison to a single

particle active transport model. Recall the deterministic reaction–diffusion ac-
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tive transport model given by equation (2.3). Letting C l
i(t) = M l

i (t)/Vi, and

using equation (2.7) to calculate the mean of equation (2.39), we find that the

mean of the concentration of the l’th chemical species is given by

d
〈

C l
i

〉

dt
−

N
∑

j=1

(

Vj

Vi
κl

ij

〈

C l
j

〉

− κl
ji

〈

C l
i

〉

)

=

N
∑

j=1

(

Vj

Vi
kl

ij

〈

C l
j

〉

− kl
ji

〈

C l
i

〉

)

+
K
∑

k=1

νl
k

〈

ãk
i (Ci)

〉

.

Suppose the rates κl
ij could be chosen so that the active transport term,

N
∑

j=1

(

Vj

Vi
κl

ij

〈

C l
j

〉

− κl
ji

〈

C l
i

〉

)

,

is a discretization of −∇ ·
(

C l(x, t)vl(x)
)

. Then, as for the purely diffusive case,

in the continuum limit the only difference between the deterministic reaction–

diffusion active transport model and the mean concentrations of the stochastic

model would be the non–commutativity of the reaction terms with averaging;

both diffusion and active transport would be identical between the two models.

Alternatively, we can simplify equation (2.39) as in Section 2.4.3. Restricting

to movement due solely to active transport (no diffusion), we assume the active

transport jump rates are independent of the chemical reactions present within a

given chemical system. Therefore, we now consider a chemical system involving

no reactions. The movement by active transport of each individual particle

of each chemical species will then be independent. It is therefore sufficient to

consider the active transport, in the presence of no reactions, of just one particle

of one chemical species. With these assumptions, equation (2.39) then reduces

to

dP (m)

dt
=

N
∑

i=1

N
∑

j=1

κij (mj + 1) P (m + ej − ei) − κjimiP (m). (2.40)
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As M (t) is describing one particle, Mi(t) will be zero for all i except the location

at which the particle is. Let X(t) be the process giving the position of the

particle at time t. Then define

Qi(t) ≡ P (ei, t) ≈ Prob{X(t) ∈ Vi|X(0) = x0},

ei denoting, as before, the unit vector along the i’th Cartesian coordinate axis

of IRN . Letting the probability density to be at the center of mesh cell i be

pi(t) ≡ Qi(t)/Vi, and following the analysis of Section 2.4.3, we find that pi

satisfies
dpi

dt
−

N
∑

j=1

Vj

Vi
κij pj − κji pi = 0. (2.41)

Therefore, if the rates again formed a discretization of the advection operator,

−∇ · (v(x), then in the continuum limit as cell size goes to zero equation (2.41)

would become
∂p

∂t
(x, t) + ∇ · (p(x, t)v(x)) = 0. (2.42)

This is simply an advection equation, exactly what one would expect for the

motion in a velocity field, v(x), of a single particle.

With this continuum limit, and that for the mean concentrations, we see

that constructing an operator, Ah, of the form

(Ahp)i =
N
∑

j=1

Vj

Vi
κij pj − κji pi, (2.43)

where Ah → −∇ · (v(x), will determine the κij. (Again, here h represents

the maximum length scale associated with a computational cell). The active

transport jump rates will then be κij, provided κij ≥ 0 (see Appendix A). We

shall see in Section 3.2 that we obtain different scalings for the active transport

and diffusion jump rates.
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The preceding model is a more macroscopic formulation of active transport

than is often used. By using advection to model active transport, we are assum-

ing that the active transport mechanism is deterministic. Our method therefore

approximates determinisitic advective motion by a stochastic process. In the

continuum limit as the mesh width approaches zero, the stochastic process will

become deterministic. We note that one could also couple more microscopic

stochastic active transport models, as in [41] and [42], to the reaction–diffusion

master equation if needed.
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Chapter 3

Numerical Method

3.1 Determining the Diffusive Jump Rates

From the results of Section 2.4.1, an appropriate spatial discretization of ei-

ther the classical deterministic formulation of reaction–diffusion, or the Fokker–

Planck equation for a single Brownian particle would determine the jump rates

in (2.10). We note that in choosing the jump rates to recover either one of these

two formulations, the macroscopic diffusion of the mean concentration from

the reaction–diffusion master equation, or the microscopic Brownian motion

of independent particles, we will also recover the other formulation. Previous

authors [17] [40] have used the requirement of obtaining macroscopic diffusion

of the mean concentrations given by the reaction–diffusion master equation to

derive diffusive jump rates in the special case of a uniform Cartesian mesh. In

this case, it has been shown that the jump rates, with mesh width h, can be

given by
D

h2
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for jumps between neighboring mesh cells, and are zero for jumps between

non-neighboring cells. This result has been known from as far back as [16].

In this section, instead of focusing on recovering macroscopic diffusion of the

mean concentrations, we focus on the mathematically equivalent requirement

of reproducing single particle Brownian motion. We note that if we assume

molecules are only moving by diffusion, then the requirement of recovering single

particle Brownian motion in the continuum limit is a physical necessity for the

reaction–diffusion master equation. With this choice we can derive valid jump

rates for diffusion within complex geometries, allowing us to extend the existing

methodology to handle arbitrary boundaries. This result is important since

many problems of practical interest contain geometrically complex domains,

such as the movement of molecules within biological cells where there are many

barriers due to organelles and membranes.

To discretize the Laplacian, and hence obtain the diffusive jump rates,

boundary conditions must be specified for the domain of interest; this is dis-

cussed in Section 3.1.1. Section 3.1.2 derives the embedded boundary method to

discretize the Fokker–Planck equation, and calculates the corresponding diffu-

sive jump rates for the reaction–diffusion master equation. Some consequences

of the specific discretization chosen are also presented. In Section 3.1.3 the

complete algorithm for solving the reaction–diffusion master equation is sum-

marized. Convergence of the embedded boundary discretization is demonstrated

for several examples in Section 3.1.4, while Section 3.1.5 discusses the conver-

gence of the overall algorithm of Section 3.1.3.
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3.1.1 Boundary Conditions

Since we are applying the overall method to simulations of biochemical networks

in eukaryotic cells, which are cells with a nuclear membrane, we formulate our

boundary conditions for this type of domain. Denote the entirety of the cell

by Ω, and the cell membrane (i.e., exterior boundary) as ∂Ω. A eukaryotic cell

will also have a nucleus, Ωn ⊂ Ω, a closed volume contained completely within

the interior of the cell. The nuclear membrane, ∂Ωn, encloses the nucleus,

partitioning the cell’s interior into two distinct compartments.

Passage through the cellular membrane will not be allowed, so that the ex-

terior boundary will have a no–flux Neumann condition. This can, of course, be

changed to a more general flux condition if necessary. The nuclear membrane

will be impermeable to certain species, requiring again a no–flux Neumann con-

dition, while allowing a passive flux for others. This second condition will be

modeled by having the nuclear membrane flux proportional to the jump in prob-

ability density, or concentration, across the membrane. Note that this boundary

condition assumes molecules cross the nuclear membrane independently of each

other. The boundary condition may be derived from a more detailed model

of the nuclear membrane as containing channels, called nuclear pores, through

which certain species may diffuse. The nuclear membrane is thin relative to the

size of a eukaryotic cell, and hence the diffusive motion of molecules within the

membrane will equilibrate rapidly. This implies that the diffusive flux within

the membrane can be assumed spatially constant. In addition, the number

of nuclear pores is large enough that we approximate them as a fixed back-

ground density within the membrane. Combining these two approximations,

and idealizing the membrane as infinitely thin, implies that the flux through
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the nuclear membrane is proportional to the difference in probability density,

or concentration, across the membrane. Note that in certain situations this

boundary condition would need to be modified to a more physically detailed

model. One such example would be if the number of molecules crossing the

nuclear membrane can become large enough to saturate the nuclear pores.

Consider a single particle moving by classical Brownian motion within the

cell. Let p(x, t) denote the probability density for the position of the particle.

Then within both the nucleus, Ωn, and the cytoplasm, Ω\Ωn, p(x, t) will satisfy

equation (2.14). (Here Ω \ Ωn denotes the set of points within Ω that are not

also contained in Ωn). Let [p]n denote the jump in p(x, t) across the nuclear

membrane. Define by ρ the nuclear membrane permeability, and by D the

diffusion constant of the particle. Let η denote the outward pointing normal to

a given surface. Then, incorporating the assumed boundary conditions, p(x, t)

satisfies
∂p

∂t
= D∆p, in Ω,

∂p

∂η
= 0, on ∂Ω,

−D
∂p

∂η
= −ρ [p]n , on ∂Ωn,

(3.1)

with the initial condition p(x, 0) = δ(x − x0), where x0 is the known initial

position of the particle.. A discretization of these equations that has the general

form of (2.13), will determine the jump rates in the reaction–diffusion master

equation.

The corresponding multiple species, deterministic reaction–diffusion model

for the assumed boundary conditions follows. Let
[

C l
]

n
denote the jump in C l

across the nuclear membrane, ρl the nuclear membrane permeability, and Dl
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the diffusion constant of the l’th species. Then

∂C l(x, t)

∂t
= Dl∆C l +

K
∑

k=1

νl
k ãk(C(x, t),x), in Ω,

∂C l(x, t)

∂η
= 0, on ∂Ω,

−Dl ∂C l(x, t)

∂η
= −ρl

[

C l
]

n
, on ∂Ωn,

(3.2)

with the initial condition, C l(x, 0) = C0(x).

3.1.2 Numerical Discretization

For simplicity, we discretize (3.1) instead of the deterministic reaction–diffusion

formulation (3.2). We may do this because our purpose is not to obtain a

numerical scheme for the deterministic equations but instead to obtain the jump

rates for use in our stochastic simulation, and, as was shown in Section 2.4.1, the

jump rates are the same whether we use (3.1) or the full deterministic reaction–

diffusion system (3.2). For the remainder of this section, we use the word “cell”

to refer to a cell of the Cartesian computational mesh, and we specify “biological

cell” when that is what we mean. We embed Ω in a Cartesian mesh with cell

centers xi, and mesh width h. There are three different domains contained in

this description: the nuclear space, Ωn, the cytoplasm, Ω \ Ωn, and the space

exterior to the biological cell. The total computational domain within which

the biological cell is embedded is taken to be a square.

Define three separate solutions to (3.1), corresponding to each of the three

domains: pnuc, the value of p(x, t) within Ωn, pcyt, the value of p(x, t) within

Ω \ Ωn, and pext, the value of p outside the biological cell. Since the particle

is assumed to never leave Ω, pext will be zero. Denote by pα the value of the
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Figure 3.1: 2D Cartesian mesh cells cut by nuclear membrane. The darker

region represents the portion of Ωn, the nuclear space, within the mesh cells.

The lighter region represents the portion of Ω \ Ωn, the cytoplasm, within the

mesh cells. Acyt
i+1/2,j gives the length of the piece of the face connecting cells (i, j)

and (i+1, j) that is within the cytoplasmic domain. The remaining Aα
i,j values,

for α a given domain, are defined similarly. ABn

i,j is the length of the piece of the

nuclear membrane within the cell (i, j). Xi,j gives the center of the Cartesian

cell at location (i, j). Also, V α
i,j (not shown) gives the area of the portion of cell

(i, j) within the domain α.
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solution for domain α, where α ∈ {nuc, cyt, ext}. Each of these solutions are

assumed to be smoothly extendable across the boundaries of their region of

definition. Note that the actual solution p(x, t) will not be smooth across either

the nuclear or cellular membrane, but its value on either side of each of these

membranes can be smoothly extended to the other side.

For spatial dimension d, let i ∈ d denote the index vector for mesh cells.

With the smooth extension assumption, a cell–centered solution value, pα
i , can

always be defined within cells containing some portion of the domain α. For a

cell completely within this domain only one solution value will be considered,

pα
i . If a cell is split by one of the membranes then two cell–centered solution

values will be stored for the cell. It is assumed that at most one boundary

intersects a given cell. For example, in Figure 3.1, which shows the 2D case for

simplicity, cell i = (i, j) is split by the nuclear membrane, hence, there would be

two solution values stored for this cell, pnuc
i , and pcyt

i . These two solution values

are subsequently used to approximate the boundary condition on the membrane.

They also allow, in the master equation formulation, separate probabilities of

the particle being in either portion of the cell. Again, as the particle can not

cross ∂Ω, pext
i = 0 for all i. As we know pext

i , multiple values need not be stored

for cells cut by ∂Ω. If the particle could cross the cellular membrane, then pext
i

would not necessarily be zero, and multiple values would be needed in cells split

by ∂Ω.

Figure 3.1 defines several geometric quantities associated with cells that are

used in the numerical discretization. Let ek denote the unit vector along the

k’th coordinate axis of IRd. Define by

F (x, t) = −D∇p, (3.3)
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the probability flux vector per unit area. Let F α be the flux vector of the domain

α solution, and (Fk)α the k’th component of F α. ηα will denote the outward

pointing, with respect to domain α, normal to a given surface. Following the

conservative discretization method in [30], for all cells, i, in which pα
i is defined:

dpα
i

dt
= −(∇ · F α)i, (3.4)

≈ −
1

V α
i

∫

V α
i

∇ · F α dV = −
1

V α
i

∫

∂V α
i

F α · ηα dS,

= −
1

V α
i

(

∑

±

d
∑

k=1

∫

Aα
i±ek

F α · ηα dS +

∫

Bn

F α · ηα dS +

∫

Be

F α · ηα dS

)

,

≈ −
1

V α
i

(

d
∑

k=1

(

Aα
i+ 1

2
ek

(Fk)
α
i+ 1

2
ek

− Aα
i− 1

2
ek

(Fk)
α
i− 1

2
ek

)

+ ABn

i F Bn

i · ηBn

i

)

.

Here, Bn = ∂Ωn ∩ ∂V α
i , and Be = ∂Ω ∩ ∂V α

i . The surface integral over Be is

identically zero due to the no–flux boundary condition at ∂Ω. If a non–zero

flux boundary condition is specified instead, then the integral would contribute

another term of the form

−
1

V α
i

ABe

i F Be

i · ηBe

i

in the last line of (3.4).

To give a valid Reaction–Diffusion master equation the fluxes are chosen as

the standard full–face centered difference

(Fk)
α
i± 1

2
ek

= ∓D
pα

i±ek
− pα

i

h
.

From the nuclear membrane boundary condition

F Bn

i · ηBn

i = −ρ [p]Bn

i .

To enforce this jump condition the cell–centered solution value for the domain

on the other side of the nuclear membrane is used. For example, if α = nuc
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then pα′

i is used, where α′ = cyt. Vice–versa, if α = cyt, then α′ = nuc. Using

this definition, the boundary condition is approximated by choosing

ρ [p]Bn

i ≡ ρ
(

pα′

i − pα
i

)

.

With all the flux terms specified, the final discretization is then

dpα
i

dt
=

D

V α
i h

(

∑

±

d
∑

k=1

Aα
i± 1

2
ek

(

pα
i±ek

− pα
i

)

)

+
ABn

i ρ

V α
i

(

pα′

i − pα
i

)

. (3.5)

For cells that do not intersect any boundary the discretization reduces to the

standard five(seven)–point discrete Laplacian in 2D(3D).

Defining the probability of the particle being in the domain α portion of the

i’th cell as

Qα
i (t) = pα

i V α
i ≈ Prob{X(t) ∈ V α

i |X(0) = x0}, (3.6)

the discretization can be rewritten as

dQα
i

dt
=

D

h

(

∑

±

d
∑

k=1

Aα
i± 1

2
ek

V α
i±ek

Qα
i±ek

−
Aα

i±ek

V α
i

Qα
i

)

+ ABn

i ρ

(

Qα′

i

V α′

i

−
Qα

i

V α
i

)

. (3.7)

The first term in (3.7) represents diffusive motion between computational cells,

while the second represents motion across the nuclear membrane within one

computational cell. Let the two components of a split computational cell be

represented as separate computational cells. In this form, all movement be-

tween computational cells within the same domain is by diffusive jumps, while

movement between computational cells of different domains is by jumps de-

termined by the membrane fluxes. Despite the appearance of the membrane

flux terms, this equation, with an appropriate index relabeling to account for

the multiple components of a split computational cell, still has the same form

as (2.12). Hence, all motion is still represented as first order reactions, with

jump rates given by the coefficients of the Q{·}
{·} terms.
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Taking Aα
ij to be the area of the domain α face shared by cells i and j,

then the jump rate from the domain α component of cell j to the domain α

component of cell i is:

kα
ij =

DAα
ij

hV α
j

. (3.8)

For strictly interior cells this reduces to

kα
ij =

D

h2
.

The jump rate across the nuclear membrane in cell i, from domain α′ to domain

α is

kαα′

i =
ABn

i ρ

V α′

i

. (3.9)

A similar equation holds for the jump from domain α to domain α′. Note that

kα
ij and kα

ji are unequal in general because V α
i may not be equal to V α

j . Similarly,

kαα′

i and kα′α
i will also differ as V α

i may not be equal to V α′

i .

There is a fundamental difference in the scaling between equation (3.8),

which scales like 1/h2, and (3.9), which scales like 1/h. This difference arises

because the flux for diffusive motion is proportional to the gradient of the den-

sity, while the flux across the nuclear membrane is proportional to the difference

in the density across the membrane.

A consequence of the conservative discretization form is that total probabil-

ity is conserved:
∑

α

∑

i∈α

dQα
i

dt
=
∑

α

∑

i∈α

dpα
i

dt
V α

i = 0.

The master equation approximation will also satisfy the principle of detailed

balance: the statement that at thermodynamic equilibrium the unidirectional

probability flux from cell i to cell j is equal to the unidirectional probability flux
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from cell j to cell i. We expect detailed balance to hold, as (3.1) forms a closed

and isolated system due to the no–flux cellular membrane condition and passive

nuclear membrane flux (no active transport). Letting peq(x, t) = peq be the

constant equilibrium solution to the continuous problem, then (Qeq)α
i = peqV α

i

will be the equilibrium probability of the Brownian particle being in the domain

α component of cell i. For Aα
ij the area of the domain α face between cells i

and j, the detailed balance condition is

kα
ji(Q

eq)α
i = kα

ij(Q
eq)α

j ,

⇐⇒
DAα

ij

hV α
i

(Qeq)α
i =

DAα
ij

hV α
j

(Qeq)α
j ,

⇐⇒
(Qeq)α

i

V α
i

=
(Qeq)α

j

V α
j

,

which holds by the definitions of (Qeq)α
i and (Qeq)α

j . For jumps across a mem-

brane between domains α and α′,

kα′α
i (Qeq)α

i = kαα′

i (Qeq)α′

i ,

⇐⇒
ABn

i ρ

V α
i

(Qeq)α
i =

ABn

i ρ

V α′

i

(Qeq)α′

i ,

⇐⇒
(Qeq)α

i

V α
i

=
(Qeq)α′

i

V α′

i

,

which again holds by the definitions of (Qeq)α
i and (Qeq)α′

i . Note that an active

transport boundary condition at the cellular membrane could make the system

open, in which case detailed balance would no longer be expected to hold.

Moreover, an active transport mechanism at the nuclear membrane would also

prevent the system from coming to thermodynamic equilibrium and would result

in a steady state in which the above relationships across the nuclear membrane

would be violated. This would not effect the rate constants for other (passive)
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processes however, which would therefore still satisfy the conditions derived

from the principle of detailed balance.

For comparison to our discretization, note that in [30] (Fk)i± 1
2
ek

is chosen

to be the standard centered difference approximation when the k’th face does

not intersect a boundary. This leads to the five(seven)–point Laplacian as the

discretization for strictly interior cells. For faces cut by the boundary, [30] inter-

polates between the centered difference flux in neighboring cells to approximate

the flux at the midpoint of the cut face. This method leads to a second or-

der accurate approximation to the Laplacian, but does not give a valid master

equation for the continuous time–discrete space discretization. To see why, note

that the general form of the master equation for the probability, Qi, of being

at site i with transition probability per unit time Wji # 0, is given by (A.1).

In general interpolation will introduce negative weights Wji or Wij into the

i’th equation. Furthermore, interpolation violates the condition that if the i’th

equation contains a term WijQj then the j’th equation should contain a term

−WijQj.

An alternative discretization method is presented in [18] that accounts for

the boundary by using the standard five(seven)–point Laplacian at all locations

and adding an extra forcing term. As the master equation has no forcing terms

this method would not give an equation that could be realized by the Gillespie

Method.

3.1.3 Overall Method

Using the discretization from the previous Section, realizations of the stochastic

process described by the reaction–diffusion master equation can be created using
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the Gillespie Method. The overall simulation algorithm is:

1. Initialization:

(a) Given the membrane locations, calculate Aα
i±ek

, V α
i , and ABn

i , for

each location, i, each direction, ek, and each domain, α.

(b) From equations (3.8) and (3.9) calculate the jump rates for all species,

within all Cartesian cells containing some part of Ω.

(c) For each piece of a Cartesian cell, calculate the rates of all chemical

reactions that can occur there. For reactions with volume dependent

rates use V α
i to change the rate constants to units of reciprocal time.

2. Time Evolution:

(a) Simulate individual realizations of the stochastic process described by

the reaction–diffusion master equation using the Gillespie Method.

Diffusive and transmembrane solute motion are represented as first

order reactions, using the jump rates calculated in step (1b). Within

each component of a cell, the rates from step (1c) are used to simulate

chemical reactions.

3. Output:

(a) To estimate moments or distributions, use statistics from many sim-

ulations.
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3.1.4 Convergence of the Numerical Discretization

The convergence of the discretization provided by (3.5) is illustrated in 2D for

both the Poisson equation and diffusion equation with circular boundaries. The

method was found to converge between first and second order spatially. Let

(uh)
α
i denote the numerical solution to the Poisson problem, and uh the vector

whose components are given by (uh)
α
i . Define the maximum norm, ‖uh‖∞, as

‖uh‖∞ = max
α,i∈α

|(uh)
α
i | .

A volume weighted two norm, ‖uh‖w
2 , is defined as

‖uh‖w
2 =

(

∑

α

∑

i∈α

((uh)
α
i )2 V α

i

)
1
2

.

Let (un
h)α

i denote the numerical solution to the diffusion equation at time tn, un
h

the solution vector at time tn, and uh the solution over all spatial locations, do-

mains, and times. The maximum norm over all time is defined as maxn ‖un
h‖∞.

As in Section 3.1.1, ∂Ω will denote the cell membrane, or outer boundary, while

∂Ωn will denote the nuclear membrane, or inner boundary. In all of the exam-

ples considered in this section, the two boundaries are concentric circles with

radii 1 and 1/2, respectively. The domain into which the circles are embedded

is taken, for a given mesh width h, to be the square centered at the origin with

sides of length 2 + 4h. This provides a separation between the boundary of the

computational domain, and the embedded boundaries.

Figure 3.2(a) shows the convergence of the discretization for the Poisson

equation with just the outer boundary. The equations are

∆u = f(x), in Ω,

∂u

∂η
= 0, on ∂Ω,

(3.10)
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Figure 3.2: Continued on next page. See next page for legend.
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Figure 3.2: Convergence results for Poisson equation solutions; star is two norm

error, and circle is maximum norm error. These errors are plotted against the

mesh width dx on log–log plots. The empirical order of accuracy is m, which is

the slope of the best fit straight line in each case.
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where f(x) was chosen so that the exact solution was

u =
r4

4
−

r3

3
, r ≤ 1, (3.11)

with u = 0 for r > 1. The two norm error converged at order 1.6, while the

maximum norm error converged at order 1.7.

An angular dependence was added to f(x) to give the exact solution

u =

(

r4

4
−

r3

3

)

cos θ, r ≤ 1, (3.12)

with u = 0 for r > 1. Figure 3.2(b) shows the convergence of the errors for

this problem. The θ dependence actually improves the convergence, so that the

two norm error is order 1.86, while the maximum norm error now converges at

order 1.89.

Figure 3.2(c) shows the convergence of the discretization for the Poisson

equation with both boundaries. The equations are

∆u = f(x), in Ω,

∂u

∂η
= 0, on ∂Ω,

−
∂u

∂η
= π [u]n , on ∂Ωn,

(3.13)

where f(x) was chosen so that the exact solution was

u =



























cos πr + sin πr in Ωn,

cos πr in Ω \ Ωn,

0 outside Ω.

(3.14)

The jump condition at the interior boundary reduces the order of convergence

to 1.15 in the two norm, and 1.23 in the maximum norm.
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Figure 3.3: Continued on next page. See next page for Legend.
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Figure 3.3: Convergence results for diffusion equation solutions; star is two

norm error at tf , circle is the maximum norm error at tf , and diamond is the

maximum of the maximum norm error over all time. These errors are plotted

against the mesh width dx on log–log plots. The empirical order of accuracy is

m, which is the slope of the best fit straight line in each case.
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Figure 3.3(a) shows the convergence of the discretization for the diffusion

equation with just the exterior boundary. The final time, at which the two norm

and maximum norm errors were measured was taken to be tf = .025. At this

time the solution was still far from equilibrium. ∆t/h was fixed at about tf/L,

where L was the diameter of the outer boundary. For the examples in Figure 3.3,

∆t/h ≈ .013. The time integration was performed using the second order, L0

stable, implicit Runge–Kutta method mentioned in [30]. Similar results were

obtained for a Crank–Nicholson discretization. The equations are

∂u

∂t
= ∆u + f(x, t), in Ω,

∂u

∂η
= 0, on ∂Ω,

(3.15)

where f(x) was chosen so that the exact solution was

u =

(

r4

4
−

r3

3

)

e−20t, r ≤ 1, (3.16)

with u = 0 for r > 1. At tf , the two norm error converged at about order 2.01,

and the maximum norm error converged at about order 1.84. The maximum

over all time points of the maximum norm converged at about order 1.81.

Figure 3.3(b) shows the convergence of the discretization for the diffusion

equation with both boundaries. Note that the same time discretization was

used as above, again with ∆t/h ≈ .013. The equations are

∂u

∂t
= ∆u + f(x, t), in Ω,

∂u

∂η
= 0, on ∂Ω,

−
∂u

∂η
= [u]n , on ∂Ωn,

(3.17)
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where f(x, t) was chosen so that the exact solution was

u =



























(

br4

4 + ar3

3 + ar5

5

)

e−20t in Ωn,
(

r3

3 − r4

4

)

e−20t in Ω \ Ωn,

0 outside Ω.

(3.18)

a and b were chosen to satisfy the jump boundary condition at r = 1/2. At

tf the two norm error converged at about order 2.06, and the maximum norm

error converged at about order 1.75. The maximum over all time points of the

maximum norm converged at about order 1.68.

3.1.5 Convergence of the Overall Method

The overall method presented in Section 3.1.3 has two sources of error associ-

ated with it: sampling error, and error due to the spatial discretization. The

Gillespie method provides exact realizations of the stochastic process defined by

the reaction–diffusion master equation, hence the error in any individual realiza-

tion is due solely to the spatial discretization. From the central limit theorem,

for a fixed mesh size, we expect the error between the mean population levels

from N simulations and the means of the reaction–diffusion master equation,

to be approximately O(1/
√

N). Note that the constant in the O(1/
√

N) term

will depend on the mesh size. With a sufficient number of samples the joint

probability distribution, for a fixed mesh size, can be estimated to any desired

accuracy, but the required number of samples might be very large.

As an example, consider a single particle moving within a 2D biological cell.

Assume the cell has a circular cellular membrane of radius 1, and a circular

nuclear membrane of radius 1/2. The particle’s dynamics are assumed to be
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Figure 3.4: Convergence of the mean of Gillespie simulations to the numerical

solution to (3.1). Here the error is given by the maximum absolute difference

over all times and spatial locations between the Gillespie simulation estimate,

and the numerical solution. A 37 by 37 mesh was used with mesh width 2/33,

D = 1, and ρ = 1. The particle was started at the center of the domain for all

simulations. m gives the slope of the best fit line to the data.
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given by (3.1), with D = 1 and ρ = 1. Since there is only one particle, the mean

number of the particle in a given region is just the probability of the particle

being in that region. As the reaction–diffusion master equation is in terms of the

population levels of the particle at different locations, its mean should converge

to the solution of (3.1) as h goes to zero. Figure 3.4 shows the maximum error

over all times between the mean of N Gillespie simulations and the numerical

solution to (3.1), as the number of samples is increased. Here h is fixed at 2/33,

for a 37 by 37 mesh. Notice that the error decreases like 1/
√

N .

Having obtained the distribution given by the reaction–diffusion master

equation, there is still the question of how accurate a representation of the

dynamics of the system it gives. It is not clear that the reaction–diffusion mas-

ter equation has a well–defined continuum limit as h goes to zero. Instead, it

is generally considered valid only for a range of h values, and there are sev-

eral simultaneous physical conditions which h should satisfy. First, h should

be significantly larger than the mean free path, λ, between the elastic collisions

driving diffusion. This condition ensures that the system can be considered

in local equilibrium within a computational cell because of many non–reactive

collisions. Note, however, that to ensure that the system is accurately resolving

local behavior, and also that the approximation of diffusion as jumps between

cells is reasonable, h should be significantly smaller than the length scale of the

entire system, L. Summarizing these constraints,

L 6 h 6 λ.

As we now show, h also needs to be chosen large enough (!) that the system can

be considered in local equilibrium and well mixed within each mesh cell on the
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time scale of the fastest bimolecular reactions. This assumption underlies the

use of stochastic chemical kinetics independently within each mesh cell. For this

to hold, the time scale for the particle to diffuse throughout a mesh cell should

be much faster than the time scale for the fastest bimolecular chemical reaction.

The time scale to diffuse throughout a region of length scale h is approximately

h2/D. For a bimolecular reaction, the time scale with rate constant k is h3/k

for a mesh cell of volume h3. (Recall that the units of the rate constant of a

bimolecular reaction are volume per unit time.) Hence, it is necessary that,

h3

k
6

h2

D
,

which implies that,

h 6
k

D
.

Thus, the rate constant for a bimolecular reaction places a fundamental lower

limit on the spatial size of mesh cells. Fortunately, for cellular processes and

the molecules involved in them, k/D is generally not large enough to impose a

significant restriction on h. In summary, letting k denote the rate constant of

the fastest bimolecular reaction, then

L 6 h 6 max

(

λ,
k

D

)

.

In these inequalities D is the diffusion coefficient of a particular molecular

species and k refers to the fastest bimolecular reaction in which that species

participates. Such inequalities must hold simultaneously for all species under

consideration. Note that a first order reaction does not restrict the mesh size

in any manner since it generally represents an internal molecular event, and is

not dependent on the system being well–mixed locally.
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Figure 3.5: Average number of reactions in stochastic diffusion simulations,

given by stars, compared to the exact solution for the expected number of

reactions of the spatially homogeneous chemical master equation, solid straight

line. Error bars give 99.7 percent confidence intervals about the data points.

The error bars are calculated using the sampled variance. N gives the number

of mesh points in each direction. For each data point, 3000 sample realizations

were used to calculate the average number of reactions. The dashed lines give

the predicted 99.7 percent confidence interval, for 3000 samples, about the exact

mean using the exact variance of the well–mixed master equation. Data is from

t = .1, a time at which approximately half the A, and half the B chemicals have

been converted to C. Note the drastically expanded vertical scale.
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As of yet, the reaction–diffusion master equation has not been derived from

more microscopic physical models. Its validity has been verified numerically

in [6] through comparison with microscopic hard sphere models that track in-

dividual particle positions and momenta. One might also hope that, for suf-

ficiently fast diffusion, the results from the reaction–diffusion master equation

applied to an initially well–mixed system would agree over a range of h values

with the spatially homogeneous chemical master equation. For example, con-

sider the simple chemical reaction A+B → C, within a 1 unit by 1 unit square.

The exact solution, at any time, for the average number of reactions in the

spatially homogeneous chemical master equation is given in [24]. This reduces

the statistical error in the problem to that in estimating the average number of

reactions from the reaction–diffusion master equation. 100 molecules of A and

100 of B are each started randomly distributed throughout the domain. No–flux

boundary conditions were assumed for the diffusion of chemicals, but periodic

boundary conditions were also tested with no significant impact on the results.

With bimolecular rate constant, .0001, and a diffusion constant of 100 for each

species, k/D = .000001. Hence, by the preceding arguments h should only

need to be greater than .000001 for the reaction–diffusion master equation to

be valid. Figure 3.5 shows that as the number of mesh points, N , is increased,

the average number of reactions from spatial simulations agrees with the ex-

act number of reactions given by the spatially homogeneous chemical master

equation to statistical error.

70



3.2 Determining Active Transport Jump Rates

We now return to the active transport model of Section 2.5 and derive ex-

pressions for the physical jump rates κl
ij. The same methodology as in the

previous section is used, developing an embedded boundary discretization of

equation (2.42) to obtain the rates. In the subsequent analysis we assume the

reader is familiar with the notation of the previous section, particularly the geo-

metrical mesh quantities defined in Figure 3.1. We begin by defining the active

transport flux,

F (x, t) = ρ (x, t) v (x) .

As equation (2.42) is a conservation law, the analysis of equation (3.4) holds.

For simplicity, we assume that particles can not move through membranes by

active transport so that all membrane fluxes are zero. With this assumption,

we find that

dρα
i

dt
≈ −

1

V α
i

(

d
∑

k=1

(

Aα
i+ 1

2
ek

(Fk)
α
i+ 1

2
ek

− Aα
i− 1

2
ek

(Fk)
α
i− 1

2
ek

)

)

. (3.19)

Note, by definition the active transport flux satisfies

(Fk)
α
i± 1

2
ek

= (ρvk)
α
i± 1

2
ek

,

where vk denotes the k’th component of v. We approximate this term by up-

winding, letting

(ρvk)
α
i± 1

2
ek

= ρα
i± 1

2
ek−

1
2
ek

max
(

0, (vk)
α
i± 1

2
ek

)

+ ρα
i± 1

2
ek+ 1

2
ek

min
(

0, (vk)
α
i± 1

2
ek

)

.

(3.20)
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Rewriting equation (3.19) we then find

dρα
i

dt
≈ −

1

V α
i

∑

±

d
∑

k=1

±

(

Aα
i± 1

2
ek

[

ρα
i± 1

2
ek−

1
2
ek

max
(

0, (vk)
α
i± 1

2
ek

)

+ ρα
i± 1

2
ek+ 1

2
ek

min
(

0, (vk)
α
i± 1

2
ek

)

]

)

. (3.21)

Using equation (3.6), the probability of the particle being in the domain α

component of the i’th mesh cell, Qα
i , is

dQα
i

dt
=
∑

±

d
∑

k=1

±

(

Aα
i± 1

2
ek

V α
i± 1

2
ek−

1
2
ek

Qα
i± 1

2
ek−

1
2
ek

max
(

0, (vk)
α
i± 1

2
ek

)

+
Aα

i± 1
2
ek

V α
i± 1

2
ek+ 1

2
ek

Qα
i± 1

2
ek+ 1

2
ek

min
(

0, (vk)
α
i± 1

2
ek

)

)

.

This has the form of a master equation, and hence we find that the jump

rate, κα
i+ek,i, to go from the domain α component of the i’th mesh cell to the

neighboring mesh cell, i + 1
2ek, satisfies,

κα
i+ek,i =















Aα
i+ 1

2
ek

Vi

∣

∣

∣
(vk)

α
i+ 1

2
ek

∣

∣

∣
, if (vk)

α
i+ 1

2
ek

≥ 0,

0, else.

(3.22)

Likewise, the jump rate to the neighbor, i − ek satisfies

κα
i−ek,i =















Aα
i− 1

2
ek

Vi

∣

∣

∣
(vk)

α
i− 1

2
ek

∣

∣

∣
, if (vk)

α
i− 1

2
ek

≤ 0,

0, else.

(3.23)

Note that both these jump rates scale like 1
h , for mesh width h (as opposed

to the diffusive jump rates which scale like 1
h). This is expected since active

transport is being modeled as an advection process, and hence only involves

one derivative of the density, ρ (x, t). With these choices of jump rates our

overall discretization method will remain conservative.
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Chapter 4

Application to Gene Expression

4.1 Transcription, Translation, Transport

Model

As an application of the method presented in Section 3.1.3 we present a model

of transcription, nuclear export, translation, and nuclear import in eukaryotes.

While the model is simplified, and uses transcription and translation models

that are more appropriate for a prokaryotes, it demonstrates the feasibility of

the method in simulating biological networks. Section 4.1.1 describes the basic

molecular cell biology necessary to understand the biochemical reaction model

of Section 4.1.2. Section 4.1.3 shows the time evolution of one realization of the

model.
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4.1.1 Background Biology

The process by which a functional protein is produced from a segment of DNA

that codes for it, called a gene, is a complex series of chemical events. In a

coarsest description, the gene is first transcribed to produce a copy of itself

called an mRNA. The mRNA is a linear sequence of nucleotides, every three of

which comprise an element of a code representing an amino acid. The mRNA

is then translated by special cellular machinery whereby the linear sequence

of nucleotides are read, and the corresponding sequence of amino acids that

the mRNA codes for are assembled. The polypeptide chain of amino acids

typically undergoes further chemical and structural modifications to then form

a functional protein.

For eukaryotes this situation is more complicated: transcription occurs in the

nucleus and translation occurs in the cytoplasm of the cell. Between transcrip-

tion and translation there is then an additional step that is required involving

the movement of the mRNA out of the nucleus. This nuclear export process

requires a series of chemical events; it can not occur simply through diffusion

of the mRNA. Similarly, those proteins that influence gene expression must by

imported into the nucleus to be effective.

Large protein complexes form pores in the nuclear membrane through which

all trans–membrane traffic flows. These nuclear pore complexes are normally

only wide enough for small molecules of less than 9 nanometers to pass through

by free diffusion. Large molecules, such as mRNAs and most proteins, require

the assistance of nuclear export and import receptors, which allow the pores

effectively to dilate so that molecules of up to 26 nanometers can pass [1].

We shall be interested in the export of newly transcribed mRNA from the
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nucleus, and the import of the resulting protein product back into the nucleus.

These two pathways are believed to be distinct in the nuclear receptors used,

and in the biasing factors that confer directionality to the process (so that, for

example, newly exported mRNA does not get re–imported into the nucleus).

Since the general mRNA export pathway is still unsettled, we shall use the

same pathway for modeling mRNA export and protein import. This pathway is

driven by a nuclear membrane RanGTP gradient that confers directionality to

the movement of cargo across the membrane. A subset of the full RanGTP cycle

model presented in [37] is used to account for the movement of receptors and

their cargo. The RanGTP nuclear transport process is sometimes referred to

as “active” because there is an energy expenditure in maintaining the gradient

of RanGTP across the nuclear membrane. In contrast, the actual movement

of cargo across the nuclear membrane is believed to be passive. Note that this

pathway is used for the export of some mRNAs, for example, the export of

incompletely spliced HIV mRNA encoding viral structural proteins [9].

The basic model presented in the next section is built on the pathway of

transcription of one gene to produce mRNA, nuclear export of the mRNA,

translation of the mRNA within the cytoplasm, and import of the resulting

protein product back into the nucleus. Protein import plays an important role

in many transcriptional networks, allowing the protein product of one gene

to bind and regulate the expression of another. Several important steps in

the transcription–translation cycle for eukaryotes are not modeled, including

splicing, the opening of the chromatin to allow physical access to the gene, and

the assembly of the transcription initiation complex.
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4.1.2 Chemical Model

The eukaryotic cell is modeled in 2D as two concentric circles, representing the

plasma and nuclear membranes. The plasma membrane radius is taken to be

11.81 µm, while the nuclear membrane radius is 5µm. The transcription and

translation models used are based on those presented in [12]. Specifically, the

gene of interest has several states. DNA denotes that the gene is free of RNA

polymerase II, hereafter RNAP, the enzyme which reads the nucleotides com-

prising the gene and then incorporates the corresponding nucleoside triphospate

into the growing mRNA transcript. DNA0 will denote that the RNAP is bound

to the gene’s promoter and ready to begin transcription. DNAl will denote that

the first l of the nucleotides forming the gene have been read and incorporated

into the mRNA, with M giving the total number of nucleotides in the gene.

Finally, the number of mRNA molecules within spatial computational cell i is

given by mRNAi. For simplicity, the gene is assumed to be localized in the

center of the nucleus, which will have index icenter. The concentration of both

RNAP and the nucleoside triphospates that are added to the mRNA transcript

are assumed fixed so that transitions between the different DNA states are first

order reactions. With these definitions, the transcriptional reactions, all defined

solely at the cell center, are then:

DNA → DNA0,

DNAl−1 → DNAl, l = 1, . . . ,M − 1,

DNAL−1 → mRNAicenter
+ DNA.

The rates for these reactions are respectively: .05 s−1, 30 s−1, and 30 s−1. The

number of nucleotides in the gene, M , is chosen to be 999.
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Newly transcribed mRNA is assumed to diffuse freely throughout the nucleus

until entering the export pathway. The mRNA export model is based on the

RanGTP export system. Denote by NR, the nuclear export receptor to which

mRNA can bind, by Rt, RanGTP, by Rd, RanGDP, by Rb, RanBP1, and by

NR–Rt, nuclear receptor complexed with RanGTP. All five are assumed to be at

steady state concentrations, and uniformly distributed throughout the nucleus

and cytoplasm. Note that the steady state concentrations are not assumed to

be the same within the nucleus and cytoplasm, simply within each individually.

Steady state concentrations and subsequent reaction rates were based on the

data in [37]. The export process consists of three reactions, beginning with the

binding of the export receptor–RanGTP complex to nuclear mRNA. Once this

has occurred, the nuclear membrane is assumed to be permeable to the complex.

At all locations within the cytoplasm the complex can then bind RanBP1, which

subsequently induces the release of the mRNA from the complex. The reactions

are:

mRNAi + NR–Rti → mRNA–NR–Rti, within nucleus,

mRNA–NR–Rti + Rbi ! mRNA–NR–Rt–Rbi, within cytoplasm,

mRNA–NR–Rt–Rbi → mRNAi + NRi + Rbi + Rdi, within cytoplasm.

Using the assumption of constant concentrations, we can reduce these reactions

to the following four:

mRNAi → mRNA–NR–Rti, within nucleus,

mRNA–NR–Rti ! mRNA–NR–Rt–Rbi, within cytoplasm,

mRNA–NR–Rt–Rbi → mRNAi, within cytoplasm.
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The rates for these reactions are respectively: 1184.5 s−1, 298.93 s−1 for the

forward, .5 s−1 for the reverse, and 51.19 s−1.

Once the mRNA is free within the cytoplasm, it can then associate with

ribosomes, the molecular machines on which translation occurs. The ribosomes

are assumed to be uniformly distributed throughout the cytoplasm as a constant

background concentration. The translation process begins with the binding of

a mRNA to a ribosome to form a complex that is ready to translate, denoted

by mRNA0
i . As the ribosomes are very large, it is assumed that the translation

process is immobile. Translation then consists of a series of elongation steps by

which the mRNA is moved through the ribosome, read, and each set of three

nucleotides is translated into the appropriate amino acid. This amino acid

is then added to the growing polypeptide that will become the protein. Let

mRNAl denote that l amino acids have been incorporated into the polypeptide

chain, l = 1, . . . , N , where N = M/3. Denote by P protein. Assuming all

amino acid concentrations are spatially homogeneous and at steady state, the

translation process reduces to the following set of reactions:

mRNAi → mRNA0
i , within cytoplasm,

mRNAl−1
i → mRNAl

i, l = 1, . . . , N − 1, within cytoplasm,

mRNAN−1
i → Pi + mRNAi, within cytoplasm.

The rates for these reactions are respectively: .5 s−1, 33 s−1, and 33 s−1.

Protein may freely diffuse within both the nucleus and the cytoplasm, how-

ever, it may not freely cross the nuclear membrane. Instead, it uses the RanGTP

nuclear import process to enter the nucleus. This process consists of two re-

actions: protein binding to nuclear import receptor within the cytoplasm, and
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unbinding of protein from the receptor upon binding of RanGTP within the

nucleus. The reactions are then:

Pi + NRi → P–NRi, within cytoplasm,

P–NRi + Rti → Pi + NR–Rti, within nucleus.

Using the constant concentration assumption, these reactions can be reduced

to the following first order reactions:

Pi → P–NRi, within cytoplasm,

P–NRi → Pi, within nucleus.

The rate for these reactions are respectively: 1218.25 s−1, and 1.23 s−1.

A feedback mechanism is incorporated into the model by allowing the protein

to repress the expression of its own gene. Denoting by DNArep the repressed

state of the gene, the reactions are

DNA + Picenter
! DNArep

Here the forward reaction rate is, .01 µm3s−1, and the reverse rate is .01 s−1.

Finally, mRNA is assumed to be able to be degraded within the cytoplasm

with rate .2 s−1, and protein anywhere with rate .0025 s−1. Table 4.1 gives the

diffusion and nuclear membrane permeability rates for the different species in

the model. Note that because of the finite diffusion coefficients, this model will

give different statistics than the corresponding well-mixed model. For example,

in the nuclear export model the time for an mRNA–nuclear export receptor

complex to diffuse throughout the nucleus is approximately

r2
nuc

D
= 250 s.
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Species D µm2 s−1 ρ µm s−1

mRNA .1 0

mRNAl 0 0

mRNA–NR–Rt .1 .17

mRNA–NR–Rt–Rb .1 0

P 20.0 0

P–NR 20.0 1.87

Table 4.1: Diffusion constant, D, and nuclear membrane permeability, ρ, for

each species.

In contrast, the time scale for that complex to leave the nucleus in the well-

mixed model would be approximately

4
3πr3

nuc

4πr2
nuc ρ

= 9.8 s.

With the assumed biological constants the two step export process, finding the

nuclear membrane and then passing through it, is strongly diffusion limited.

Therefore, a well–mixed model with infinitely fast diffusion would ignore the

long time scale for an export complex to find the nuclear membrane, much less

to get through it. This would result in a substantially faster export process

than biologically occurs.

4.1.3 Numerical Results

Figures 4.1 and 4.2 show the time evolution of one realization of the model

described in the previous section, using an underlying 37 by 37 Cartesian mesh

with a mesh width of approximately .72 microns. Within the simulations we
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Figure 4.1: Continued on next page.
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Figure 4.1: Continued on next page.
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Figure 4.1: Continued on next page.
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Figure 4.1: Evolution of one realization of the model from Section 4.1.2 over

several minutes. A blue star denotes the unbound DNA, and a blue “x” that

the DNA is repressed. During transcriptional states the DNA is not displayed.

Red stars denote mRNA, and red “x’s” mRNA bound to nuclear receptor and

RanGTP. mRNAs coupled to nuclear receptors, RanGTP, and RanBP1 are

not present in the images shown. During translation mRNAs are not displayed.

Green stars denote proteins, and a green “x” represents protein bound to nuclear

receptor. Time is in seconds.
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Figure 4.2: Continued on next page.
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Figure 4.2: Continued on next page.
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Figure 4.2: Continued on next page.
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Figure 4.2: Evolution of one realization of the model from Section 4.1.2 over a

half hour. Symbols have the same codes as in Figure 4.1.
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Figure 4.3: Total number of nuclear proteins in one realization of the model

from Section 4.1.2. Simulation occurred over 30,000 seconds, with data points

at one second intervals.
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calculate the number of molecules of each chemical species within each mesh

cell. We assume that within each individual mesh cell particles are well–mixed,

and as such the marker for every molecule in each figure is placed randomly

within the mesh cell containing that molecule. Initially there are no mRNAs or

proteins within the system, and the DNA is in the unbound state. Figure 4.1

shows the evolution of the system over several minutes. By Figure 4.1(a) the

first mRNA has been fully transcribed and, because of the fast binding rate,

is bound to a nuclear export receptor. The DNA is unbound, waiting for the

next transcription cycle to begin. After 160 seconds, a second mRNA has been

transcribed and bound with a nuclear receptor. The DNA is again unbound. By

310 seconds several proteins have been translated. One is diffusing within the

cytoplasm bound to a nuclear receptor, while the other has already undergone

the nuclear import process and is diffusing freely within the nucleus. Notice

there is only one visible mRNA, as the second is undergoing translation within

the cytoplasm and hence not displayed. The DNA is also not visible as it

is undergoing transcription. Finally, after 380 seconds, several proteins have

accumulated within the nucleus, with one binding to and inhibiting the DNA.

A free mRNA is diffusing within the cytoplasm, along with a nuclear receptor

coupled protein.

By allowing the protein to feed back and inhibit the transcription of its

gene, we create a system in which protein production occurs in bursts. Fig-

ure 4.2 shows that a large amount of protein is built up in the nucleus by 1160

seconds, and that the DNA is in the repressed state. The higher protein levels

increase the probability of the gene becoming repressed, and because the on

rate for binding is sufficiently fast, and the off rate sufficiently slow, by 1670
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seconds the overall protein population has shrunk from 10 to just 2. This is

due in part to the fast decay rates of the mRNA. As the DNA is repressed,

no mRNAs are transcribed to replace those that quickly decay, and hence the

protein population simply decays away over time. Once the protein population

becomes sufficiently low, as in Figure 4.2(b), it becomes more unlikely that pro-

tein will find the DNA to bind and repress it, and hence, the DNA is able to

enter the transcription cycle. By 2010 seconds at least one mRNA has been

transcribed and subsequently translated several times, as the nuclear protein

level has increased. The production of mRNA followed by its subsequent trans-

lation produces new proteins, and consequently the nuclear protein population

rises thereafter. By 2080 seconds, 10 protein molecules are within the nucleus.

Figure 4.3 shows the total number of nuclear proteins in one realization,

over 30,000 seconds. The total number is given by the amount of free, receptor–

bound, and DNA–bound proteins within the nucleus at a fixed time. Note

that the number of proteins tends to quickly jump up to a given amount, and

then more slowly decay to either one or zero proteins. When only one protein

is present for large periods of time, it is usually bound to the DNA, thereby

repressing the gene (data not shown).
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Chapter 5

The Three–Dimensional Point

Binding Interaction

In Chapter 4 a model for transcription, translation, and nuclear transport was

presented. In the model, the protein product of the expressed gene could rebind

to a regulatory region controlling the gene’s promoter and negatively inhibit fur-

ther transcription. In this bound state the protein then prevented transcription

from initiating. This binding interaction was modeled by assuming that both

the gene and the regulatory region were isolated within the same mesh cell. As

the reaction–diffusion master equation model assumes that particles are well–

mixed locally, this implied that the binding interaction occurred through the

same mechanism as a normal bimolecular reaction, but only within the speci-

fied mesh cell containing the gene. It is not clear if the solution to this model

will converge in the continuum limit as the numerical mesh size is reduced to

zero. We therefore investigate in this chapter whether this point binding model

converges as the numerical mesh size is reduced. While convergence of the
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reaction–diffusion master equation for the point binding interaction is not nec-

essary to create useful models involving point binding reactions, it is a desirable

property. (For example, one could always try to fit kinetic parameters to achieve

desired results for a particular mesh size, however, there is no guarantee that

this approach would always work).

Another reason to study the 3D point binding reaction is its strong relation

to the binding of diffusing molecules. For example, consider the reaction A +

B → C at rate k, with one initial molecule of A and one initial molecule of B.

Assume that the domain in which the particles are diffusing is all of IR3. In the

Fock Space formulation of Section 2.4.4, we then find that the probability the

particle of species A is in mesh cell i and the particle of species B is in mesh

cell i′, F (1,1,0)(i, i′, t), satisfies

dF (1,1,0)

dt
(i, i′, t) =

(

[

DA∆a
h + DB∆b

h

]

F (1,1,0)
)

(i, i′, t) −
k

h3
δii′F

(1,1,0)(i, i′, t).

(5.1)

Here ∆a
h denotes the standard second order discrete Laplacian acting on the

coordinates of the A particle, and ∆b
h denotes the discrete Laplacian acting on

the coordinates of the species B particle. Coupled to this equation there would

be a second equation describing the motion of the species C particle, once the

reaction has occurred. F 0(i, t), the probability for the species C particle to be

in the i’th mesh cell, satisfies

dF 0

dt
(i, t) =

(

DC∆c
hF

0
)

(i, t) +
k

h3
F (1,1,0)(i, i, t).

We now consider the separation vector, i− i′, for the two particles of species
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A and B. Define the probability of the separation vector having the value j,

P (j, t) =
∑

i−i′=j

F (1,1,0)(i, i′),

=
∑

i∈R3

F (1,1,0)(i, i − j).

Let 0 denote the zero vector. We do not show here, but one can derive from

equation (5.1) that P (j, t) satisfies

dP

dt
(j, t) = (D∆hP ) (j, t) −

k

h3
δj0P (j, t), (5.2)

where D = DA +DB. Note that this equation is the same as the Fock Space for-

mulation that would correspond to a reaction–diffusion master equation model

for the binding of single diffusing particle to a fixed binding site at the origin.

The notion of a true continuum 3D point binding interaction, which we

might hope the reaction–diffusion master equation point binding model provides

an approximation to, is problematic. In both a continuum formulation, and

for fine enough mesh sizes in the discrete master equation model, when the

number of diffusing substrate molecules is small the probability of any one

actually finding and binding to the target location is low. We therefore discuss

several different ways to model, and regularize, the continuum 3D point binding

interaction in Section 5.1. Note that the reaction–diffusion master equation

model already contains such a regularization by allowing binding to occur as a

well–mixed reaction once a substrate molecule is within the mesh cell containing

the target site. Several regularized models of the interaction in continuous,

three–dimensional space are discussed. In Section 5.2 we study the existence of a

continuum limit for equation (5.2). We conclude in Section 5.3 by investigating

the convergence of a discrete approximation of the continuum point binding
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model developed in [34]. The specific discrete model considered has the benefit

of being a master equation, and hence could be incorporated directly into the

reaction–diffusion master equation formulation.

5.1 Continuum Point Binding Models

There are a number of different methods by which the binding of a diffusing

molecule in three–dimensional space to a small fixed location can be modeled

in continuous space formulations. One common technique involves regularizing

the problem through the addition of a finite binding radius about the target

point. This changes the problem to that of binding to a 2D surface in 3D. Such

formulations can then be numerically simulated through Langevin type simula-

tions, however, due to the small size of the binding target it remains difficult

for diffusing particles to ever encounter the binding radius. Another similar

method is the use of an interaction potential with small support to represent

the reaction. This type of method again suffers from the difficultly of the diffus-

ing particle ever encountering the region in which the potential is defined. Both

of these mechanisms have been used by other modelers, see for example [3].

Note that one other drawback to each of these methods is the introduction of

new parameters to the original reaction–diffusion problem. For example, both

methods require the introduction of reaction–radii to describe the extent of the

binding surface, or support of the potential. Moreover, the numerical implemen-

tation of these types of models can often become complex, requiring methods for

detecting particle–target encounters, and detecting particle–geometry collisions.

Alternatively, it is possible to formulate a continuum point binding interac-
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tion using the differential operator

D∆ − kδ(x − x0),

where the target point is taken to be at x0. This operator can be defined

rigorously, see [2]. The probability density, ρ(x, t), for the diffusing particle to

be at the point x then satisfies

∂ρ

∂t
(x, t) = D∆ρ(x, t) − kδ(x − x0)ρ(x, t). (5.3)

Equation (5.3) has also been given a rigorous mathematical meaning, see for

example [10]. We note that the formal continuum limit taken in Section 2.4.4

would give (5.3) as the limit of equation (5.2), however, this formal limit may

not necessarily be correct.

The three preceding point binding models all have the draw back of having a

small interaction radius for binding to the target point. In practical terms, dis-

crete approximations to these equations would appear to either require very fine

computational meshes, with mesh sizes smaller than the scale of the interac-

tion radius, or require special techniques to account for the binding interaction.

In [3], where no spatial mesh is used, binding radii are increased from proba-

ble physical sizes, and instead chosen such that well–mixed equilibrium binding

rates are recovered.

One method for avoiding the problem of a small interaction radius is to take

advantage of the biology of the binding interaction. For example, consider the

previously mentioned model of gene expression developed in Chapter 4. There,

binding of gene regulatory proteins to regulator sites on DNA was represented as

a point binding reaction. In actuality, the exact mechanism by which regulatory

proteins bind specific sites on DNA is unknown. DNA itself is a one-dimensional
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object when considered on the scale of the entire nucleus, however, DNA is

wound up and surrounded by many bound proteins forming a large intertwined

complex known as chromatin. The chromatin forms more three–dimensional like

structure than isolated DNA. A number of authors, see for example [28] and

[43], have studied the DNA binding problem, both experimentally and through

modeling, but as of yet no definitive theory has been developed. Some models

propose that regulatory site binding involves nonspecific binding of regulators

to DNA, along which the regulators can then diffuse/slide to locate specific

binding sites. Whether such a mechanism is physically possible is questionable

because of the large number of occluding objects comprising the chromatin.

Other models rely on the existence of measured interaction potentials for specific

binding sites, however, these potentials are often fairly short range [28], and

would not appear to eliminate the problem of how a single diffusing particle

can locate and bind a specific point. Note that one mechanism that can reduce

the singularity of binding a specific point is the existence of a large density

of binding particles. Biologically, it may be that most regulatory proteins are

simply present in a sufficiently large number to eliminate the singularity of the

problem.

In Section 5.3 we describe another continuum model for this specific bind-

ing problem. We essentially assume that the diffusing regulatory molecule can

bind to the surface of the chromatin, and diffuse within this surface until bind-

ing to an unfolded one–dimensional piece of DNA. Once bound to the DNA,

the molecule can diffuse until reaching the binding site, or can unbind back

to the chromatin. The exact model considered is an idealization of this bio-

logical model, due to Charles S. Peskin [34]. One benefit of this approach is
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the elimination of the short scale binding interaction and associated reaction–

radii parameters. This allows the use of numerical meshes with length scales

of the same order as those in Chapter 4. The model does have the drawback

of requiring additional binding parameters for attachment to chromatin and

DNA. Diffusion constants for movement within the chromatin and DNA are

also required. A beneficial feature of this continuum model is that it can be ap-

proximated by a convergent spatial discretization that has the form of a master

equation. This allows the incorporation of the model into the reaction–diffusion

master equation formulation.

5.2 Continuum Limit of a Point Binding Model

We now numerically examine the behavior of equation (5.2) as h → 0. As

we shall see, ascertaining the existence of a continuum limit to this equation

appears to require a more sophisticated analysis than the simple convergence

study based on numerically refining the computational mesh presented here.

The domain in which we solve (5.2) is taken to be the three–dimensional periodic

cube, Ω = [0, L)3. To make explicit the dependence of the numerical solution on

h, we denote the solution to this equation, at the location (i, j, k) at time t, by

(Ph)ijk(t). In all numerical simulations within this section we use biologically

relevant rate constants, taking the diffusion constant, D = 10 µm2 s−1, and the

length of the periodic domain, L = 24 µm. The binding rate to the point binding

site is taken to be k = 1 µm3 s−1. For each simulation, the diffusing substrate

particle is started at the origin, and therefore a discrete approximation to the
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delta function is used as the initial condition. The approximation chosen is that

(Ph)ijk(0) =
1

h3
δi0 δj0 δk0.

The point binding site is placed at x0 = (12, 0, 0) µm. All simulations use

N = 33 × 3M mesh points, for M = 0, 1, or 2. Note that this corresponds

to refining the mesh width by factors of 3. This choice insures that the mesh

cell containing the binding site remains centered at (12, 0, 0). It also ensures

that a region represented by a fixed collection of mesh cells on the coarsest

mesh can be exactly represented by a collection of mesh cells on any finer

mesh. This allows the calculation of the probability of the particle being in

specific regions at a fixed time, over a range of mesh widths. One disadvantage

of this setup is that the cell center of the mesh cell initially containing the

particle changes as the mesh is refined. This condition, along with the choice

of delta function approximation, leads to reduced first order convergence of the

numerical solutions to (5.2) for standard diffusion, k = 0. (See Table 5.2).

For each simulation, time integration was performed using the Crank–

Nicholson like, second order L0–stable method of [39]. All simulations were

run to a final time of .42 s, with

dt =
.42

300 × 3m
,

where m = 0 when N = 33, m = 1 when N = 99, and m = 2 when N = 297.

Finally, denote by ΛN←3N the averaging operator that maps a mesh function

on a (3N)3 mesh to a mesh function on a N3 mesh. ΛN←3N is defined by

(ΛN←3NPh/3)ijk =
1

27

3i+2
∑

i′=3i

3j+2
∑

j′=3j

3k+2
∑

k′=3k

(Ph/3)i′j′k′ .
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We first examine the numerical convergence of the discrete approximation

for both k = 0 and k = 1. We define four measures of error, the maximum

norm error of the discrete density,

e∞(N, t) = max
ijk

∣

∣(ΛN←3NPh/3)ijk(t) − (Ph)ijk(t)
∣

∣ ,

the discrete L2 error of the density,

e2(N, t) =

(

∑

ijk

[

(ΛN←3NPh/3)ijk(t) − (Ph)ijk(t)
]2

h3

)1/2

,

the error in the probability for the particle to still be diffusing at time t,

ediff(N, t) =

∣

∣

∣

∣

∣

∑

ijk

[

(ΛN←3NPh/3)ijk(t) − (Ph)ijk(t)
]

h3

∣

∣

∣

∣

∣

,

and the error in the probability for the particle to still be diffusing at time t

and not be in the mesh cell containing the binding site,

ē diff(N, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∑

ijk,
(i,j,k) '=((N/2),0,0)

[

(ΛN←3NPh/3)ijk(t) − (Ph)ijk(t)
]

h3

∣

∣

∣

∣

∣

∣

∣

∣

.

Here 7N/28 denotes the greatest integer less than or equal to N/2, hence,

(7N/28, 0, 0) labels the mesh cell containing the binding site. The final er-

ror measure is used to see how the solution is behaving away from the binding

site.

Table 5.1 shows each error measure evaluated at t = .42 s, for both k = 0

and k = 1, when N = 33 and N = 99. Note that to five digits the first two

error measures appear identical when comparing the k = 0 and k = 1 cases. In

actuality the errors only agree to seven or eight digits. This indicates that the

discrete densities for the binding problem and regular diffusion are very close
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k = 0 k = 1

e∞(33, .42) 2.5566e-4 2.5566e-4

e∞(99, .42) 7.8685e-5 7.8685e-5

e2(33, .42) 3.1568e-3 3.1568e-3

e2(99, .42) 1.0386e-3 1.0386e-3

ediff(33, .42) 1.0071e-5 1.0119e-5

ediff(99, .42) 1.5031e-8 1.0242e-7

ē diff(33, .42) 9.8426e-6 9.8949e-6

ē diff(99, .42) 4.7987e-6 4.7099e-6

Table 5.1: Numerical measures of error associated with equation (5.2), for k = 0

and k = 1.

in value, and that the effect of the binding reaction for physical values of k is

quite small. Notice, however, that the last two error measures, which depend

on the probability of the particle being in a region as opposed to the probability

density, agree to fewer non–zero digits. (Though their actual value is several

orders of magnitude smaller than the first two error measures).

With the previous error definitions, we now define the numerical convergence

rates. For example, the numerical convergence rate for the maximum norm error

is given by

r∞(N, t) = log3

(

e∞(N, t)

e∞(3N, t)

)

.

The other convergence rates, r2, rdiff, and r̄ diff are defined similarly.

Table 5.2 gives the observed numerical convergence rates for k = 0 and

k = 1. The rates are evaluated at the final simulation time of t = .42, a time

when the solution is still far from equilibrium. Notice that the maximum norm

101



k = 0 k = 1

r∞(33, .42) 1.073 1.073

r2(33, .42) 1.012 1.012

rdiff(33, .42) 5.923 4.181

r̄ diff(33, .42) .654 .676

Table 5.2: Empirical numerical convergence rates associated with equation (5.2),

for k = 0 and k = 1.

and two norm rates, like the observed errors, agree to four digits for k = 0 and

k = 1. Moreover, the rates indicate that in both cases the discrete density is

converging at first order when varied between the chosen mesh sizes. The last

two rates, those depending on convergence of the particle’s probability to be in

a region, are noticeably different when k = 0 and k = 1.

To see if the discrete solution when k = 0 was approaching the discrete

solution to the diffusion equation for k = 1, as h was refined, we examined the

error between the k = 0 and k = 1 solutions for fixed values of N . For a fixed

mesh width, h, let ρh be the solution to the discrete diffusion equation, i.e.,

the k = 0 case, and let ρ̂h denote the solution to the point binding problem

with k = 1. Five of the error measures that were examined include the discrete

maximum norm error,

α∞(N, t) = max
ijk

|(ρh)ijk(t) − (ρ̂h)ijk(t)| ,

the relative maximum norm error,

α∞r (N, t) = max
ijk

∣

∣

∣

∣

(ρh)ijk(t) − (ρ̂h)ijk(t)

(ρh)ijk(t)

∣

∣

∣

∣

,
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N = 33 N = 99 N = 297

α∞(N, .42) 7.9172e-8 6.9265e-8 3.1348e-8

α∞r (N, .42) 4.7148e-2 6.3757e-2 3.0736e-2

α2(33, .42) 5.7235e-8 6.2309e-8 3.7231e-8

αdiff(33, .42) 1.8595e-7 2.3448e-7 1.4709e-7

ᾱ diff(33, .42) 1.5549e-7 2.0784e-7 1.3503e-7

Table 5.3: Error between k = 0 and k = 1 solutions to equation (5.2) for varying

mesh sizes.

the discrete two norm error,

α2(N, t) =

(

∑

ijk

|(ρh)ijk(t) − (ρ̂h)ijk(t)|2 h3

)1/2

,

the error in the total probability for the particle to be unbound,

αdiff(N, t) =

∣

∣

∣

∣

∣

∑

ijk

[(ρh)ijk(t) − (ρ̂h)ijk(t)] h
3

∣

∣

∣

∣

∣

,

and the error for the particle to be unbound and outside the mesh cell containing

the binding site on the coarsest mesh,

ᾱ diff(N, t) =

∣

∣

∣

∣

∣

∣

∑

ijk∈I(N)

[(ρh)ijk(t) − (ρ̂h)ijk(t)] h
3

∣

∣

∣

∣

∣

∣

.

Here I(N) denotes those mesh cells, for N = 33, 99, or 297, that are outside

the volume representing the N = 33 mesh cell containing the binding site.

Table 5.3 shows for each error measure the error between the k = 0 and

k = 1 solutions as N is varied. Aside from the pointwise maximum norm error,

none of the errors strictly decrease as N is increased. Each of the other error
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measures increases as N is refined to 99 and then decrease as N is further

increased to 297.

Based on the preceding sets of convergence rates and numerical errors, the

point binding interaction does appear to converge as the mesh width is refined

through the chosen set of values. It is unclear if this apparent convergence will

continue as the mesh is further refined. Over the entire chosen range of mesh

values, the solution when k = 1 is not converging to the solution to the standard

diffusion equation, however, when going directly from N = 33 to N = 297 all the

error measures between the two solutions decrease. Clearly, more investigation

is need to answer whether the solution to equation (5.2) is converging as h → 0.

5.3 Dimensional Hierarchy Model

We now investigate an alternative model of the point binding interaction due to

Charles S. Peskin [34]. The continuum problem for a diffusing particle to locate

a point binding site is regularized by having binding occur through a hierarchy

of different dimensional surfaces. Previous authors have studied diffusive models

with binding to surfaces [43], but the current model provides a novel mechanism

to locate and bind a specific point. When diffusing in 3D, the particle is assumed

to either continue diffusing or bind to a 2D surface. Within this surface, the

particle may then freely diffuse, unbind and return to 3D diffusion, or bind to

a specific curve (within the surface). Similarly, within the curve the particle

can unbind and return to diffusing within the 2D surface, diffuse along the

curve, or bind to a specific point on the curve, the point at which the binding

reaction occurs. For comparison, note that the point binding reaction in the
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reaction–diffusion master equation formulation involves binding directly to the

point in question from 3D diffusion (see equation (5.2)). Also, see Section 5.1

for a discussion of alternative methods to regularize the point binding problem.

A canonical formulation of the proposed model is given by diffusion of a

point particle within a periodic 3D box, Ω3 = [−L/2, L/2)3. The 2D binding

surface is taken to be the plane Ω2 ≡ {(x, y, 0)} ∈ Ω3, with the 1D binding curve

the line Ω1 ≡ {(x, 0, 0)} ∈ Ω2, and the binding point the origin. The diffusing

particle is assumed to have a separate diffusion constant within each surface,

D1, D2, and D3, each having units of length2/time. Transition rates to unbind

from a lower dimensional surface to a higher dimensional surface are given by

k01, k12, and k23, each having units of time−1. Equilibrium rate constants for

moving between two successive surfaces are given by K10, K21, and K32, each

having units of length. With this definition, the transition rates to bind a lower

dimensional surface are then k01K10, k12K21, and k23K32, each having units of

length/time.

We define ρ0(t) to be the probability the diffusing particle is bound at

the reaction point, and consider a hierarchy of probability densities, ρ1(x, t),

ρ2(x, y, t), and ρ3(x, y, z, t). Each probability density, ρd, gives the probability

density for the particle to be diffusing in the d dimensional surface Ωd. For

example, ρ2(x, y, t) satisfies

Prob{particle is in Ω2} =

∫

Ω2

ρ2(x, y, t)dxdy.
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Reaction fluxes are defined by

f±
01(t) =

1

2

(

ρ0(t) − ρ1(0
±, t)K10

)

k01,

f±
12(x, t) =

1

2

(

ρ1(x, t) − ρ2(x, 0±, t)K21

)

k12,

f±
23(x, y, t) =

1

2

(

ρ2(x, y, t) − ρ3(x, y, 0±, t)K32

)

k23.

(5.4)

Letting ∆d denote the d dimensional Laplacian, the equations of evolution are

(see [34]):

∂ρ0

∂t
(t) + f+

01(t) + f−01(t) = 0,

∂ρ1

∂t
(x, t) + f+

12(x, t) + f−12(x, t) = D1∆1ρ1(x, t),

∂ρ2

∂t
(x, y, t) + f+

23(x, y, t) + f−23(x, y, t) = D2∆2ρ2(x, y, t),

∂ρ3

∂t
(x, y, z, t) = D3∆3ρ3(x, y, z, t).

(5.5)

We assume periodic boundary conditions on the exterior boundary of each sur-

face. Interior boundary conditions giving the flux between successive surfaces

are then

D1
∂ρ1

∂x
(0−, t) = f−01(t), −D1

∂ρ1

∂x
(0+, t) = f+

01(t),

D2
∂ρ2

∂y
(x, 0−, t) = f−12(x, t), −D2

∂ρ2

∂y
(x, 0+, t) = f+

12(x, t),

D3
∂ρ3

∂z
(x, y, 0−, t) = f−23(x, y, t), −D3

∂ρ3

∂z
(x, y, 0+, t) = f+

23(x.y, t).

(5.6)

Note that assuming a symmetric initial condition of the form,

ρ1(x, 0) = ρ1(−x, 0),

ρ2(x, y, 0) = ρ2(±x,−y, 0),

ρ3(x, y, z, 0) = ρ3(±x,±y,−z, 0),

(5.7)

implies that

f+
01 = f−01, f+

12 = f−12, f+
23 = f−23, (5.8)

for all time.
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5.3.1 Numerical Model

We use the numerical method of Chapter 3 to develop a spatially discrete ap-

proximation to the diffusion hierarchy model. We again assume a cubic domain,

with sides of length L. Let N denote the number of mesh cells in a given di-

mension, and h = L/N the mesh width. Mesh cell centers are then given by

(xi, yj, zk) = (ih, jh, kh) −
L

2
+

h

2
, i, j, k = 0 . . . N − 1.

Since we assume periodicity, we make the identification xN = x0, yN = y0, and

zN = z0. For N even all boundaries lie on mesh cell faces, leading to a simplified

embedded boundary discretization. We therefore restrict to even N for all

subsequent results. The discretization of ρ3(x, y, z, t) is denoted by
(

ρh
3

)

ijk
(t),

and similarly the corresponding 2D and 1D mesh variables are
(

ρh
2

)

ij
(t) and

(

ρh
1

)

i
(t) (we subsequently drop the explicit t dependence).

A discrete, one dimensional, delta function is defined as,

δh
i =















1
h , i = 0,

0, else.

Denoting 0+
h = N/2, and 0−h = N/2−1, the discrete reaction fluxes correspond-

ing to (5.4) are then given by

(

fh
01

)±
=

1

2

(

ρh
0 −

(

ρh
1

)

0±
h

K10

)

k01, (5.9)

(

fh
12

)±

i
=

1

2

(

(

ρh
1

)

i
−
(

ρh
2

)

i,0±
h

K21

)

k12, (5.10)

(

fh
23

)±

ij
=

1

2

(

(

ρh
2

)

i,j
−
(

ρh
3

)

i,j,0±
h

K32

)

k23. (5.11)

We let ∆h
d denote the standard second order, d dimensional, periodic discrete

Laplacian. The discrete diffusion operators in dimension d = 1, 2, 3, are then
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defined to be

(

Lh
1 ρh

1

)

i
= D1

(

∆h
1 ρh

1

)

i

−
(

(

ρh
1

)

N/2
−
(

ρh
1

)

N/2−1
−
(

fh
01

)−
)

δh
i−(N/2−1)

−
(

(

ρh
1

)

N/2−1
−
(

ρh
1

)

N/2
−
(

fh
01

)+
)

δh
i−N/2,

(5.12)

(

Lh
2 ρh

2

)

ij
= D2

(

∆h
2 ρh

2

)

ij

−
(

(

ρh
2

)

i,N/2
−
(

ρh
1

)

i,N/2−1
−
(

fh
12

)−

i

)

δh
j−(N/2−1)

−
(

(

ρh
2

)

i,N/2−1
−
(

ρh
2

)

i,N/2
−
(

fh
12

)+

i

)

δh
j−N/2,

(5.13)

(

Lh
3 ρh

3

)

ijk
= D3

(

∆h
3 ρh

3

)

ijk

−
(

(

ρh
3

)

i,j,N/2
−
(

ρh
3

)

i,j,N/2−1
−
(

fh
23

)−

ij

)

δh
k−(N/2−1)

−
(

(

ρh
3

)

i,j,N/2−1
−
(

ρh
2

)

i,j,N/2
−
(

fh
23

)+

ij

)

δh
k−N/2.

(5.14)

We note that these forms of the operators are easily transformed to Fourier

space. With these definitions, the spatial discretization of (5.5) is then given

by
dρh

0

dt
+
(

fh
01

)+
+
(

fh
01

)−
= 0,

d
(

ρh
1

)

i

dt
+
(

fh
12

)+

i
+
(

fh
12

)−

i
= D1

(

Lh
1 ρh

1

)

i
,

d
(

ρh
2

)

ij

dt
+
(

fh
23

)+

ij
+
(

fh
23

)−

ij
= D2

(

Lh
2 ρh

2

)

ij
,

d
(

ρh
3

)

ijk

dt
= D3

(

Lh
3 ρh

3

)

ijk
.

(5.15)

Assuming a symmetric initial condition of the form (5.7) will imply that the

discrete reaction fluxes also satisfy (5.8).

Note that equation (5.15) has the form of a master equation, with three

different types of jump rates. Diffusive jump rates for moving within each d–

dimensional surface are given by Dd/h2. Unbinding from a d − 1 dimensional

108



surface to a d–dimensional surface has the jump rate k(d−1) d. Binding rates

from a d–dimensional surface to a d− 1 dimensional surface, for mesh cells that

border the d − 1 dimensional surface, are given by k(d−1) d Kd (d−1)/h.

5.3.2 Numerical Results

As we do not have an exact closed–form solution to equation (5.5), we now

consider the the convergence of equation (5.15) as the numerical mesh width,

h, is reduced. For simplicity we examine this convergence numerically. The

specific problem we consider is that of starting a particle at the point binding

site, and then calculating the time evolution of the probability densities for the

particle’s position as the particle subsequently unbinds, and later rebinds. We

assume that after the particle rebinds for the first time, it can not subsequently

unbind. We therefore expect the bound density, ρ0(t), to approach 1 as t → ∞.

To keep track of the probability that the particle has not unbound at time t,

and that it has rebound, we split the density ρ0(t) in two. Denote by ρ0(t)

the probability that the particle has not unbound at time t, and by ρ∗0(t) the

probability that the particle has rebound to the target point after having been

unbound. In the continuum formulation, the equations of evolution now become

∂ρ0

∂t
(t) = −k01ρ0(t),

∂ρ∗0
∂t

(t) =
1

2
k01K10

(

ρ1(0
+, t) + ρ1(0

−, t)
)

,

∂ρ1

∂t
(x, t) + f+

12(x, t) + f−12(x, t) = D1∆1ρ1(x, t),

∂ρ2

∂t
(x, y, t) + f+

23(x, y, t) + f−23(x, y, t) = D2∆2ρ2(x, y, t),

∂ρ3

∂t
(x, y, z, t) = D3∆3ρ3(x, y, z, t).

(5.16)
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Notice that these changes do not effect any of the spatially defined densities.

We then find that equation (5.15) becomes

∂ρh
0

∂t
= −k01ρ

h
0 ,

∂ρ∗h
0

∂t
=

1

2
k01K10

(

(

ρh
1

)

0+
h

+
(

ρh
1

)

0−
h

)

,

d
(

ρh
1

)

i

dt
+
(

fh
12

)+

i
+
(

fh
12

)−

i
= D1

(

Lh
1 ρh

1

)

i
,

d
(

ρh
2

)

ij

dt
+
(

fh
23

)+

ij
+
(

fh
23

)−

ij
= D2

(

Lh
2 ρh

2

)

ij
,

d
(

ρh
3

)

ijk

dt
= D3

(

Lh
3 ρh

3

)

ijk
.

(5.17)

Our initial condition is then ρh
0(0) = 1, with the other densities zero at time

zero.

For all simulations we take the diffusion constants, D1, D2, and D3 to each

have the value 10 µm2s−1. The length, L, of the periodic box is taken to be

24 µm, and the unbinding rate constants, kd−1 d, are all chosen to be 1 s−1. To

discretize equation (5.17) in time we use the Crank–Nicholson like, second order

L0–stable method of [39]. We begin by showing the particle does indeed rebind

as t → ∞, i.e., that

lim
t→∞

ρ∗h
0 (t) = 1.

Letting Kd d−1 = 10µm s−1 for each equilibrium rate constant, and taking N =

64, we can see in Figure 5.1 that ρ∗h
0 (t) approaches 1 as t increases.

We now consider the numerical convergence, as h → 0, of the solutions

to equations (5.17). In the following, we take Kd d−1 = 1 µm s−1. Recall that

h = L/N . The numerical time step, dt, was chosen to satisfy

dt =
64

25N
,

≈
h

10
.
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Figure 5.1: Long time behavior of ρ∗h
0 , for K10 = K21 = K32 = 0 and dt = .1 s.

Recalling that N is assumed even, denote by ΛN←2N
d the averaging operator

that maps a d–dimensional mesh function defined on a (2N)d mesh to a mesh

function on a Nd mesh. For example, ΛN←2N
2 is defined by

(ΛN←2N
2 ρh/2

2 )ij =
1

4

(

(ρh/2
2 )2i 2j + (ρh/2

2 )2i+1 2j + (ρh/2
2 )2i 2j+1 + (ρh/2

2 )2i+1 2j+1

)

.

ΛN←2N
1 and ΛN←2N

3 are the defined similarly.

We consider three measures of the relative error in subsequent numerical
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solutions, the maximum point wise error,

e∞(N, t) = max

[

∣

∣

∣
ρ∗h/2

0 (t) − ρ∗h
0 (t)

∣

∣

∣
,
∣

∣

∣
ρh/2

0 (t) − ρh
0(t)
∣

∣

∣
,

max
i

∣

∣

∣

(

ΛN←2N
1 ρh/2

1

)

i
(t) −

(

ρh
1

)

i
(t)
∣

∣

∣
,

max
ij

∣

∣

∣

(

ΛN←2N
2 ρh/2

2

)

ij
(t) −

(

ρh
2

)

ij
(t)
∣

∣

∣
,

max
ijk

∣

∣

∣

(

ΛN←2N
3 ρh/2

3

)

ijk
(t) −

(

ρh
3

)

ijk
(t)
∣

∣

∣

]

,

the discrete L2 error,

e2(N, t) =
∣

∣

∣
ρ∗h/2

0 (t) − ρ∗h
0 (t)

∣

∣

∣
+
∣

∣

∣
ρh/2

0 (t) − ρh
0(t)
∣

∣

∣

+

(

∑

i

∣

∣

∣

(

ΛN←2N
1 ρh/2

1

)

i
(t) −

(

ρh
1

)

i
(t)
∣

∣

∣

2
h

)1/2

+

(

∑

ij

∣

∣

∣

(

ΛN←2N
2 ρh/2

2

)

ij
(t) −

(

ρh
2

)

ij
(t)
∣

∣

∣

2
h2

)1/2

+

(

∑

ijk

∣

∣

∣

(

ΛN←2N
3 ρh/2

3

)

ijk
(t) −

(

ρh
3

)

ijk
(t)
∣

∣

∣

2
h3

)1/2

,

and the maximum error over all time steps of ρ∗h0 ,

e∗(N,K) = max
k=0...K

∣

∣

∣
ρ∗h/2

0 (tk) − ρ∗h
0 (tk)

∣

∣

∣
.

Using these error measures, the empirical numerical convergence rates are then

defined to be

r∞(N, t) = log2

(

e∞(N, t)

e∞(2N, t)

)

,

r2(N, t) = log2

(

e2(N, t)

e2(2N, t)

)

,

r∗(N,K) = log2

(

e∗(N,K)

e∗(2N,K)

)

.
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Figure 5.2: Numerical Error in equation (5.17) vs. N . The number of sampled

times, K = 26. Note that the number of time steps varied for each mesh size

as dt ≈ h/10.
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N = 32 N = 64

r∗(N, 26) .95 .976

r∞(N, 2.4) .95 .976

r2(N, 2, 4) .911 .976

Table 5.4: Empirical numerical convergence rates associated with Figure 5.2.

Figure 5.2 shows that each of the error measures converges approximately

first order as the mesh spacing is refined from N = 32 to N = 256. The error in

the discrete L2
h norm is several orders of magnitude smaller than the pointwise

error. In addition, note that the error in the maximum norm, e∞, is almost

exactly the same as e∗. At t = 2.4 s, the maximum pointwise error over all the

densities and spatial locations actually equals the error in ρ∗h
0 (2.4). In general,

the pointwise error at each time, over all the densities, appears to be largest

for ρ∗h
0 (t) (data not shown). Table 5.4 shows the empirical convergence rates

associated with Figure 5.2. Note that the rates for e∗ and e∞ are the same to

three decimal places. Further, all three convergence rates are approximately

one, indicating first order convergence of the numerical discretization. This is

expected, as the approximation to the boundary conditions contained in equa-

tions (5.12),(5.13), and (5.14) is only first order in the flux, and zero’th order

for the actual diffusion operator.
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Chapter 6

Conclusion

6.1 Future extensions

There are a number of future research directions that we are currently pursuing.

Foremost is the application of the reaction–diffusion active transport formula-

tion to more realistic biological models than that of Chapter 4. One interesting

application is in studying the temperature and ATP dependence of mRNA diffu-

sion. It has been observed experimentally that the diffusion constant of nuclear

mRNAs changes more than would be predicted from the Einstein Relation when

the temperature of eukaryotic cells is lowered. Moreover, changing the ATP con-

centration in such cells also appears to affect measured diffusion coefficients [8].

One proposed mechanism for these effects involves speculation that free mR-

NAs within the nucleus can undergo non–specific DNA binding. It is known

that from the end of transcription through the beginning of nuclear export mR-

NAs are coupled to RNA helicases. RNA helicases help unwind RNA in an ATP

dependent manner, hence, the change in the mRNA diffusion constant may be
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due to changes in the enzymatic activity of bound RNA helicases.

Another research direction is in developing a more comprehensive biological

model of eukaryotic gene expression. This would require adding several new

processes including splicing, chromatin dynamics, and transcription factor as-

sembly. With a more realistic model the importance, or lack of importance, of

spatial movement in gene expression could then be studied. A related project

would be to study the effect of the geometry of organelles and chromatin on the

dynamics of gene expression. The nucleus is not a well–mixed environment, nor

is it simply an empty sphere as modeled in Chapter 4. It would be interesting

to see if different geometries have a noticeable effect on the overall expression

process.

Studying the robustness of solutions to the reaction–diffusion master equa-

tion as mesh size is varied would be very useful in determining its value as as

modeling tool. It may be that different scalings or functional forms for the reac-

tion terms in the master equation are necessary to accurately approximate more

microscopic reaction models. In this same direction, studying the relationship

between more microscopic models, such as the continuum Fock Space formula-

tion of [11], and the reaction–diffusion master equation may aide in determining

appropriate functional forms for reaction terms in the master equation. More-

over, it would be appealing to rigorously derive the reaction–diffusion master

equation from a more microscopic model, either directly as a discrete approxi-

mation to some continuum model, or indirectly as an asymptotic approximation

for a range of numerical mesh sizes.

We have not yet explored the reaction–active transport formulation de-

scribed in Sections 2.5 and 3.2. Examining the interplay between active trans-
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port and diffusion, and the effects of adding both means of spatial movement,

could provide an interesting picture on the spatial dynamics within real bio-

logical cells. Different components of the gene expression process are known to

involve active transport, such as the movement of mRNAs that are localized

within the cytoplasm. This interplay has not yet been modeled, but would be

an important component of any detailed spatial model of gene expression.

6.2 Summary

We have developed a numerical method for solving the reaction–diffusion master

equation in complex geometries, and shown how to extend this method to in-

corporate the active transport of molecules within biological cells. An abstract

model of eukaryotic gene expression was developed and solved using this master

equation approach, demonstrating the computational feasibility of the method.

This model provides a first component in developing a realistic, spatial model

of eukaryotic gene expression. The connection between the reaction–diffusion

master equation and single particle stochastic reaction–diffusion models was

also studied, and it was shown that the reaction–diffusion master equation is

equivalent to a discrete Fock Space formulation that tracks individual molecules.

We have also investigated the convergence of the point binding reaction as used

to model DNA binding interaction in Chapter 4. An alternative model of the

point binding reaction was examined in Section 5.3, and a convergent discrete

master approximation to this model developed.
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Appendix A

General Master Equation

We derive here the Master Equation for a general discrete state, continuous time

Markov process. Let {xi}i∈IN denote the possible states, and X(t) the stochastic

process. We define

P (xi, t2 | xj, t1) = Prob [X(t2) = xi, given that X(t1) = xj] .

From the Markov property one can derive the Chapman–Kolmogorov equa-

tion [17] [40] [26] which states,

dP (xi, t2 | xj, t0)

dt
=
∑

k∈IN

P (xi, t2 | xk, t1) P (xk, t1 | xj, t0).

We now assume that there exist transition weights, Wij(t), such that

lim
∆t→0

P (xi, t + ∆t | xj, t)

∆t
= Wij(t).

Intuitively, this states the the probability to transition from state xj at time t to

state xi at a short time later, t+∆t, is simply Wij(t)∆t. Using this assumption,
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and the Chapman–Kolmogorov equation, one has that

dP (xi, t | xi0 , 0)

dt
= lim

∆t→0

P (xi, t + ∆t | xi0 , 0) − P (xi, t | xi0 , 0)

∆t
,

= lim
∆t→0

1

∆t

∑

j∈IN:j '=i

(

P (xi, t + ∆t | xj, t) P (xj, t | xi0 , 0)

− P (xj, t + ∆t | xi, t) P (xi, t | xi0 , 0)
)

,

which simplifies to

dP (xi, t | xi0 , 0)

dt
=

∑

j∈IN:j '=i

(

Wij(t)P (xj, t | xi0 , 0) − Wji(t)P (xi, t | xi0 , 0)
)

.

(A.1)

Here we have made use of the fact that

P (xi, t | xi0 , 0) =
∑

j∈IN:j '=i

P (xj, t + ∆t | xi, t) P (xi, t | xi0 , 0).

Equation (A.1) is called the Master Equation for the process X(t).

A more intuitive derivation of the Master Equation is given formally by

noticing that the probability to be in the state xi at time t + ∆t is simply the

sum of two terms. The first term is the probability of being in other states xj at

time t and transitioning to state xi by time t+∆t. The second is the probability

of being in state xi at time t and remaining till time t + ∆t. Mathematically

this is expressed as

P (xi, t + ∆t | xi0 , 0) =
∑

j∈IN:j '=i

(

Wij(t)P (xj, t | xi0 , 0)∆t
)

+
(

1 −
∑

j∈IN:j '=i

Wji(t)∆t
)

P (xi, t | xi0 , 0).

Rearranging and taking the limit as ∆t → 0 gives equation (A.1).

There are several important properties of the structure of (A.1) which we use

in deriving our stochastic reaction–diffusion method. Foremost is that all the
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jump rates, Wij(t), must be non–negative. In addition, the term Wij(t)P (xj, t |

xi0 , 0) appears twice with opposite sign: once in the equation for P (xi, t | xi0 , 0)

and once in the equation for P (xj, t | xi0 , 0). This implies that the amount of

probability that flows per unit time into state i due to transitions from state j

to i, is exactly the amount of probability that flows per unit time out of state j

due to these same transitions. Finally, note that the coefficient of P (xi, t | xi0 , 0)

on the right hand side of (A.1) is non–positive and its absolute value has the

form

Wi(t) =
∑

j∈IN:j '=i

Wji(t).
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Appendix B

Basic Combinatorics Results

Consider the vector of integers, m = (m1, . . . ,mM), where M gives the number

of components of m. Suppose m contains N distinct values, and assume that

the number of each of the N distinct values is given by (n1, . . . , nN). Therefore,

M =
N
∑

i=1

ni.

Denote by σ̃ (m) the set of all distinct vectors generated by permutations of

the componenets of m. Then,

Theorem B.0.1. The number of elements in σ̃ (m) is

M !
N
∏

i=1

1

ni!
.

Let σ (m) denote the set of all vectors, including multiple copies, generated

by permutations of the components of m. σ (m) contains M ! elements. Then,

Theorem B.0.2. For any function f (m),

∑

m̃∈σ̃(m)

f (m̃) =

(

N
∏

i=1

1

ni!

)

∑

m̃∈σ(m)

f (m̃) .
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