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Abstract
The reaction–diffusion master equation (RDME) is a model for chemical
systems in which both noise in the chemical reaction process and the diffusion
of molecules are important. It extends the chemical master equation for well-
mixed chemical reactions by discretizing space into a collection of voxels. In
this work, we show how the RDME may be rewritten as an equivalent ‘particle
tracking’ model following the motion and interaction of individual molecules
on a lattice. This new representation can be interpreted as a discrete version of
the spatially-continuous ‘probability distribution function’ stochastic reaction–
diffusion model studied by Doi. We show how this new representation can
be mapped to a quantum field theory, complementing the existing work by
Peliti mapping the RDME, and Doi mapping his spatially continuous model,
to quantum field theories. The formal continuum limit, as the voxel size
approaches zero, of the ‘particle tracking’ representation is studied to consider
the question of whether the RDME approximates any spatially continuous
model.

PACS numbers: 82.20.−w, 05.40.−a, 87.10.Hk

1. Introduction

The reaction–diffusion master equation (RDME) models stochastic reaction–diffusion systems
where both noise in the chemical reaction process and diffusion of molecules are important. In
the RDME formulation, the chemical master equation [14] for well-mixed chemical reactions
is extended by discretizing space into a collection of voxels. The state of the chemical system is
then given by the number of each chemical species within each voxel. Molecules are assumed
locally well mixed so that within a given mesh voxel reactions occur as if in an isolated
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well-mixed container. Diffusion of individual molecules is modeled as a continuous-time
random walk between voxels. The RDME model goes back as far as the work of [8].

Until recently, there was an unanswered question as to how solutions to the RDME, for
systems containing bimolecular reactions, depend on the voxel size. In particular, a common
physical argument, see for example [10] or the supplement to [6], suggests the RDME is a
reasonable physical model for bimolecular reactions only for mesh spacings that are neither
too large or too small. It is important to note that this argument gives no suggestion as to an
underlying microscopic physical model or spatially-continuous model that the RDME is an
approximation to. In [10], we studied the dependence of the RDME on mesh spacing for the
bimolecular reaction A+B → ∅, in a system initially containing one molecule of each species.
There it was proven that in the continuum limit of the mesh spacing approaching zero the two
molecules never react, and simply diffuse relative to each other. Note that we only considered
the standard scaling, inversely proportional to mesh voxel volume, of the bimolecular reaction
rate. While bimolecular reaction effects are lost in the continuum limit of the RDME model,
we also showed that with the standard reaction-rate scaling the mesh spacing can be chosen
sufficiently large, though not too large, that the RDME can be thought of as an asymptotic
approximation to the diffusion limited chemical reaction model of Smoluchowski [17]. (In this
spatially continuous model, molecules undergo Brownian Motion, and react instantaneously
when they approach within a specified reaction radius).

In this work, we consider the case of the more general bimolecular reaction A + B � C,
with an arbitrary number of each chemical species initially. We restrict our attention to the
standard scaling of the bimolecular reaction rate, where it varies as the inverse volume of
a mesh voxel. In section 2, we show how to covert the reaction–diffusion master equation
for this chemical system to an equivalent ‘particle tracking’ formulation. Our state variables
switch from the number of molecules of each species in each voxel to the total number of
molecules of each species in the system, and the locations of each individual molecule. (Here
the location of a molecule corresponds to the index of the voxel containing it). The particle
tracking formulation corresponds to a discrete version of the spatially-continuous ‘distribution
function’ stochastic reaction–diffusion model of Doi ([4], section 5, equation (51)), and has
the benefit of clearly showing the pair-wise interactions between molecules for bimolecular
reactions.

In section 4, we show that the formal continuum limit of the particle tracking formulation
is a coupled set of partial differential equations with delta-function coefficients. Since the
RDME is equivalent to the discrete particle tracking model, the solutions to the RDME for
fixed mesh spacings approximate the solutions to these PDEs. Based on the results of [10],
we expect the approximation to only be asymptotic in nature, with reasonable agreement for
mesh spacings that are neither too large or too small.

In section 3, we show that the particle tracking representation may be mapped to a quantum
field theory, complementing both the work of Peliti [15] mapping the RDME, and the work
of Doi [4] mapping his ‘distribution function’ model, to quantum field theories. The effective
Hamiltonian we derive is of the same form that would be obtained when mapping the RDME
directly to a quantum field theory. Peliti’s quantum field theory representation for the RDME
has been studied by many authors; we refer the reader to [3, 12] and the reviews [13, 18] for
references to the existing literature. When using the quantum field theory representation of the
solution to the RDME, it is common to perform calculations using a formal continuum field
theory limit. We restrict our attention herein to the discrete-space field theory formulation, and
only consider spatial continuum limits in the context of the particle tracking representation.
By making this choice the formal continuum model we obtain is changed from a functional
integral based field representation to PDEs with singular coefficients.
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2. Reformulation of the RDME to a particle tracking model

We now show how to convert the reaction–diffusion master equation to a form where the
position of each individual molecule is explicitly tracked. For notational simplicity, we
restrict the chemical system we study to the reaction A + B � C. An introduction to the
general RDME for arbitrary chemical systems is available in [10, 11], and a recent review of
stochastic-reaction diffusion models, including the RDME, is provided in [7]. Denote by k+

the forward reaction rate with units volume time−1, and the reverse reaction rate with units
time−1 by k−. The domain in which the reaction may occur is taken to be all of � = R

3.
We divide � into a standard Cartesian mesh, comprised of cubes with sides of length h.

Let

i = (i1, i2, i3) ∈ Z
3

be the multi-index labeling a given voxel in �, with Z
3 representing the three-dimensional

integer index space. We denote by ai the number of molecules of chemical species A at
location i, and define

a = {ai | i ∈ Z
3}.

(We similarly define b and c.) The notation a + 1i will represent a with one added to ai. The
diffusive jump rate for species A, from voxel j to voxel i, is denoted by kA

ij , with kB
ij and

kC
ij defined similarly. Using these definitions, the reaction–diffusion master equation can be

written as
dP

dt
(a, b, c, t) = (LhP + RhP ) (a, b, c, t), (1)

where the diffusion operator, Lh, is

(LhP ) (a, b, c, t)

=
∑
i∈Z

3

∑
i′∈Z

3

([
kA
ii′ (ai′ + 1) P (a + 1i′ − 1i, b, c, t) − kA

i′iaiP(a, b, c, t)
]

+
[
kB
ii′ (bi′ + 1) P (a, b + 1i′ − 1i, c, t) − kB

i′ibiP(a, b, c, t)
]

+
[
kC
ii′ (ci′ + 1) P (a, b, c + 1i′ − 1i, t) − kC

i′iciP(a, b, c, t)
])

,

and the reaction operator, Rh, is

(RhP )(a, b, c, t)

=
∑
i∈Z

3

(
k+(ai + 1)(bi + 1)

h3
P(a + 1i, b + 1i, c − 1i, t) − k+aibi

h3
P(a, b, c, t)

+ k−(ci + 1)P (a − 1i, b − 1i, c + 1i, t) − k−ciP(a, b, c, t)

)
.

Note that (1) is a coupled system of ODEs over all possible states (a, b, c).
We now change variables to convert to the our new particle tracking representation,

a spatially-discrete version of the spatially-continuous probability distribution function
representation used in [4]. Denote by a the total number of molecules of chemical species A
within �, i.e.

a =
∑
i∈Z

3

ai.

(Define b and c similarly.) We introduce a new set of variables, ja = (
ja

1, . . . , j
a
a

)
, where

ja
l ∈ Z

3 labels the voxel in which the lth molecule of chemical species A is located. Note
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that we use a as a superscript to indicate that there are a total vectors, ja
l , that comprise the

components of ja . ja is therefore a vector in Z
3a . With jb and jc defined similarly, let

f (a,b,c)(ja, jb, jc, t) denote the probability that at time t there are a molecules of species A
located within the voxels given by ja, b molecules of species B located within the voxels given
by jb and c molecules of species C located within the mesh voxels given by jc. Note that the
molecules are assumed to be labeled so that each ja

l always represents the same molecule.
The set of all permutations of the index vectors comprising ja is defined as

σ(ja) = { (
ja

σ1
, . . . , ja

σa

) ∣∣ (σ1, . . . , σa) is any permutation of (1, . . . , a)
}
,

with σ(jb) and σ(jc) defined similarly. With these definitions, we now symmetrize f (a,b,c).
Physically, this assumption means that molecules of the same chemical species are assumed
identical, and hence the order in which such molecules are labeled is irrelevant. Note that
this assumption is implicit in the reaction–diffusion master equation (1). The symmetrized
probability is defined as

F (a,b,c)(ja, jb, jc, t) =
∑

j̃
a∈σ(ja),

j̃
b∈σ(jb),

j̃
c∈σ(jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
, t). (2)

F (a,b,c) is symmetric under permutations of the components of each vector ja, jb and jc, so
that for any permutation (σ1, . . . , σa) of (1, . . . , a),

F (a,b,c)
(
ja

σ1
, . . . , ja

σa
, jb, jc, t

) = F (a,b,c)(ja, jb, jc, t),

with similar relations holding for permutations in the components of jb and jc. Using these
definitions, the probability of being in any given state is then completely specified by the
collection

{F (a,b,c)(·, ·, ·, t)| a, b, and c take all possible values}.
We now point out several relations that we will subsequently need. Consider an arbitrary

state, (a, b, c), of the RDME and any corresponding set of molecule positions, (ja, jb, jc)

such that

ai = ∣∣{ja
l

∣∣ ja
l = i, l = 1 . . . a

}∣∣,
with similar relations holding for bi and ci. Here | · | denotes the cardinality of a set. In
what follows, we use this relation to treat ai as a function of ja within equations for the
particle tracking model. Denote by σ̃ (ja) the set of all distinct vectors, j̃

a
, that are given by

permutations of the components of ja . Note that σ̃ (ja) ⊆ σ(ja), and by identity appendix A.1
has cardinality

|σ̃ (ja)| = a!
∏
i∈Z

3

1

ai!
. (3)

With σ̃ (jb) and σ̃ (jc) defined similarly, let

σ̃ (ja, jb, jc) = σ̃ (ja) × σ̃ (jb) × σ̃ (jc).

The cardinality of this set, |σ̃ (ja, jb, jc)|, gives the total number of distinct permutations of
the components of (ja, jb, jc) that correspond to the state (a, b, c), assuming ja precedes jb,
and jb precedes jc. In terms of σ̃ (ja, jb, jc) we define

Ca,b,c = |σ̃ (ja, jb, jc)|
a!b!c!

=
∏
i∈Z

3

1

ai!bi!ci!
.
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Several identities involving Ca,b,c will subsequently be needed and are collected here:

ai = (ai′ + 1)
Ca+1i′−1i,b,c

Ca,b,c
, (4)

ci = (ai + 1) (bi + 1)
Ca+1i,b+1i,c−1i

Ca,b,c
, (5)

aibi = (ci + 1)
Ca−1i,b−1i,c+1i

Ca,b,c
. (6)

We now consider the normalization of F (a,b,c). Let �(Z3a) = {
ja ∈ Z

3a|ja
1 � ja

2 �
. . . � ja

a

}
, with �(Z3b) and �(Z3c) defined similarly. Assume that f (a,b,c)(ja, jb, jc, t) has

the normalization,
∞∑

a=0,
b=0,
c=0

∑
ja∈Z

3a ,

jb∈Z
3b,

jc∈Z
3c

f (a,b,c)(ja, jb, jc, t) = 1.

Then
∞∑

a=0,
b=0,
c=0

∑
ja∈Z

3a ,

jb∈Z
3b,

jc∈Z
3c

f (a,b,c)(ja, jb, jc, t) =
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

∑
j̃a∈σ̃ (ja),

j̃b∈σ̃ (jb),

j̃c∈σ̃ (jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
, t),

=
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,c

∑
j̃a∈σ(ja),

j̃b∈σ(jb),

j̃c∈σ(jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
, t),

=
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,cF
(a,b,c)(ja, jb, jc),

where the second line follows by identity appendix A.2 and the third by (2). We thus conclude
that

∞∑
a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,cF
(a,b,c)(ja, jb, jc, t) = 1. (7)

When F (a,b,c) is defined as in (2), the normalization factor Ca,b,c is needed. It accounts for the
multiple inclusion within the sums of states where two or more molecules of the same species
are located at the same location. In the spatially-continuous formulation of [4] this factor is
not needed. There the sums over the lattice become spatial integrals, and the set of locations
where two or more molecules of a given species are at the same position has measure zero.
Note though, since this factor is left out pointwise results, such as ([4], equation (17)), are
only valid almost everywhere. (In particular, they are incorrect at spatial locations where two
or more molecules of the same species occupy the same point.) We subsequently restrict our
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state space to �(Z3a) × �(Z3b) × �(Z3c). Note the identity
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,cF
(a,b,c)(ja, jb, jc, t) =

∞∑
a=0,
b=0,
c=0

1

a!b!c!

∑
ja∈Z

3a ,

jb∈Z
3b,

jc∈Z
3c

Ca,b,cF
(a,b,c)(ja, jb, jc, t).

We now relate F (a,b,c) to the reaction–diffusion master equation. The probability of being
in any state (a, b, c) , P (a, b, c, t), is equivalent to the probability of being in any state,
(j̃

a
, j̃

b
, j̃

c
), within the set σ̃ (ja, jb, jc). (Assuming (ja, jb, jc) is one collection of molecule

positions that are consistent with the state (a, b, c).) We therefore have that

P(a, b, c, t) =
∑

(j̃
a
,j̃

b
,j̃

c
)∈σ̃ (ja ,jb,jc)

f (a,b,c)(j̃
a
, j̃

b
, j̃

c
, t),

= Ca,b,cF
(a,b,c)(ja, jb, jc, t),

Where the last line follows by identity appendix A.2 and the definition of F (a,b,c). Substituting
this expression into equation (1) and dividing by Ca,b,c, we obtain the equations of evolution
satisfied by F (a,b,c),

dF (a,b,c)

dt
(ja, jb, jc, t) = (L̃hF

(a,b,c) + R̃hF
(a,b,c))(ja, jb, jc, t). (8)

Before deriving L̃h and R̃h, we must first introduce new notations for removing and adding
elements to a position vector, ja . Let ja\ja

l denote ja with the lth molecule removed, i.e.,

ja\ja
l = (

ja
1, . . . , j

a
l−1, j

a
l+1, . . . , j

a
a

)
.

Similarly, ja\{i} will denote removing any one component of ja that has the value i. Note
that since we are only considering a symmetrized density, it does not matter which component
with the value i is removed. We use the convention that F (a−1,b,c)(ja\{i}, jb, jc, t) is zero if
i is not equal to one of the components of ja (with similar conventions for removing B or C
molecules). Adding an additional molecule to ja is denoted by ja ∪ ja

a+1, i.e.,

ja ∪ ja
a+1 = (

ja
1, . . . , j

a
a, j

a
a+1

)
.

To add the specific value i for the new molecule’s position, the notation ja ∪ {i} is used.
With the preceding definitions, and using identity (4), the diffusion operator, L̃h, is

(L̃hF
(a,b,c))(ja, jb, jc, t) =

∑
i∈Z

3

∑
i′∈Z

3

× ([
kA
ii′aiF

a,b,c(ja\{i} ∪ {i′}, jb, jc, t) − kA
i′iaiF

(a,b,c)(ja, jb, jc, t)
]

+
[
kB
ii′biF

(a,b,c)(ja, jb\{i} ∪ {i′}, jc, t) − kB
i′ibiF

(a,b,c)(ja, jb, jc, t)
]

+
[
kC
ii′ciF

(a,b,c)(ja, jb, jc\{i} ∪ {i′}, t) − kC
i′iciF

(a,b,c)(ja, jb, jc, t)
])

. (9)

Since ai gives the number of molecule positions within ja that have the value i,

kA
i′iaiF

(a,b,c) =
∑

l∈{l̃|ja

l̃
=i}

kA
i′ja

l
F (a,b,c)(ja, jb, jc, t). (10)

Similarly,

kA
ii′aiF

(a,b,c)(ja\{i} ∪ {i′}, jb, jc, t)

=
∑

l∈{l̃|ja

l̃
=i}

kA
ja

l i
′F

(a,b,c)
(
ja

1, . . . , j
a
l−1, i

′, ja
l+1, . . . , j

a
a, j

b, jc, t
)
.
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Finally, noting that for the previous two equations

∑
i∈Z

3

∑
l∈{l̃|ja

l̃
=i}

(·) =
a∑

l=1

(·), (11)

we find that equation (9) simplifies to

(L̃hF
(a,b,c))(ja, jb, jc, t) =

∑
i′∈I 3

( a∑
l=1

[
kA
ja

l i
′F

(a,b,c)
(
ja

1, . . . , j
a
l−1, i

′, ja
l+1, . . . , j

a
a, j

b, jc, t
)

− kA
i′ja

l
F (a,b,c)

(
ja, jb, jc, t

)]
+

b∑
l=1[

kB

jb
l i

′F
(a,b,c)

(
ja, jb

1, . . . , j
b
l−1, i

′, jb
l+1, . . . , j

b
b, j

c, t
) − kB

i′jb
l

F (a,b,c)
(
ja, jb, jc, t

)]
+

c∑
l=1

[
kC
jc

l i
′F

(a,b,c)
(
ja, jb, jc

1, . . . , j
c
l−1, i

′, jc
l+1, . . . , j

c
c, t

)

− kC
i′jc

l
F (a,b,c)(ja, jb, jc, t)

])
. (12)

As we have shown in [11], the diffusive jump rates should be chosen so as to determine a
discretization of the Laplacian. This ensures that for systems in which no chemical reactions
may occur we correctly recover the diffusion of individual molecules in the continuum limit
that the mesh spacing approaches zero. Recall we denote by h the mesh spacing of the
Cartesian grid, so that h3 is the volume of a single voxel. For � = R

3, the rates, kA
ji are then

kA
ji =

{
DA/h2, j a non-diagonal neighbor of i,

0, else,

with kB
ji and kC

ji defined similarly. For appropriate jump rates in bounded domains with
geometrically complex boundaries, see [11]. With these definitions, we denote by (�h)

a
l the

discrete Laplacian acting on the ja
l coordinates,

(�h)
a
l F

(a,b,c)(ja, jb, jc, t)

=
3∑

d=1

∑
±

1

h2

[
F (a,b,c)

(
ja

1, . . . , j
a
l−1, j

a
l ± ed , j

a
l+1, . . . , j

a
a, j

b, jc, t
)

−F (a,b,c)(ja, jb, jc, t)
]
.

Here ed denotes the unit vector along the dth coordinate axis of R
3. The total Laplacian acting

on all of the ja coordinates is then defined to be

�a
h =

a∑
l=1

(�h)
a
l .

With �b
h and �c

h defined similarly, equation (12) can be simplified to

(L̃hF
(a,b,c))

(
ja, jb, jc, t

) = (
DA�a

h + DB�b
h + DC�c

h

)
F (a,b,c)

(
ja, jb, jc, t

)
. (13)

Note, for chemical systems in which the molecules simply diffuse and cannot react, this
equation implies that we correctly recover the independent Brownian motion of each molecule
as h → 0.

7



J. Phys. A: Math. Theor. 41 (2008) 065003 S A Isaacson

Using equations (5) and (6), the reaction operator, R̃h, is

(R̃hF
(a,b,c))(ja, jb, jc, t)

= k+

h3

∑
i∈Z

3

[
ciF

(a+1,b+1,c−1)
(
ja ∪ {i}, jb ∪ {i}, jc\{i}, t)

− aibiF
(a,b,c)

(
ja, jb, jc, t

)]
+ k−

∑
i∈Z

3

[
aibiF

(a−1,b−1,c+1)
(
ja\{i}, jb\{i}, jc ∪ {i}, t)

− ciF
(a,b,c)(ja, jb, jc, t)

]
. (14)

Defining the Kronecker delta

δij =
{

1, i = j,

0, else,

we find

aibiF
(a,b,c)(ja, jb, jc, t) =

∑
l∈{l′|ja

l′=i}

b∑
l̃=1

δja
l j

b

l̃
F (a,b,c)(ja, jb, jc, t). (15)

Similarly,

aibiF
(a−1,b−1,c+1)(ja\{i}, jb\{i}, jc ∪ {i}, t)

=
∑

l∈{l′|ja
l′=i}

b∑
l̃=1

δja
l j

b

l̃
F (a−1,b−1,c+1)

(
ja\ja

l , j
b\jb

l̃
, jc ∪ ja

l , t
)
. (16)

We now expand each term in (14) into a sum over molecule indexes using equations (10), (15),
and (16). Reusing equation (11), we obtain the final expression for the reaction operator,

(R̃hF
(a,b,c))(ja, jb, jc, t)

= k+

h3

[ c∑
l=1

F (a+1,b+1,c−1)
(
ja ∪ jc

l , j
b ∪ jc

l , j
c\jc

l , t
)

−
a∑

l=1

b∑
l̃=1

δja
l j

b

l̃
F (a,b,c)(ja, jb, jc, t)

]

+ k−

[ a∑
l=1

b∑
l̃=1

δja
l j

b

l̃
F (a−1,b−1,c+1)

(
ja\ja

l , j
b\jb

l̃
, jc ∪ ja

l , t
)

−
c∑

l=1

F (a,b,c)(ja, jb, jc, t)

]
. (17)

The reformulated model, equation (8) with the operators (13) and (17), corresponds to
a discrete version of the ‘probability distribution function’ model of Doi ([4], see sections 2
and 5). Note in (17) that all bimolecular interaction terms simply depend on the separation
vector, ja

l − jb

l̃
, between pairs of A and B molecules. Letting δh

(
ja

l − jb

l̃

) = h−3δja
l j

b

l̃
, the

discrete bimolecular reaction rate between molecules ja
l and jb

l̃
is then

k+δh

(
ja

l − jb

l̃

)
. (18)

8
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3. Relation to quantum field theory

We now show the equivalence of the new representation of the reaction–diffusion master
equation, equation (8), to a discrete-space second quantization Fock space model. Just as (8)
corresponds to a discrete version of the probability distribution function model of [4], the Fock
space model we now give corresponds to a discrete version of the spatially-continuous second
quantization Fock space model of [4]. Our discussion parallels that of [4].

Discrete-space second quantization representations of the reaction–diffusion master
equation go back to the work of [15]. Our Fock space representation is related to that of
[15] in the same way that (1) is related to (8) (i.e. we change state variables from the number
of molecules of a given species in a given voxel to the total number of each species in the
system and the locations of all molecules of each species).

Following [4], we define creation and annihilation operators for species A,A†(i) and
A(i), by the commutation relations

[A(i),A†(i′)] = δii′ , [A(i),A(i′)] = [A†(i),A†(i′)] = 0, (19)

with similar relations for the species B and C operators (denoted by B(i),B†(i), C(i) and
C†(i)). Note that any two operators for different species will commute. To completely specify
the creation and annihilation operators we also need to define their action on the vacuum (no
molecule) state, denoted by |0〉,

A(i)|0〉 = 0, 〈0|A†(i) = 0,

again, with similar relations for the B and C operators. We let |ja, jb, jc〉 represent the
‘quantum’ state corresponding to the chemical state (ja, jb, jc) of the last section, defined as

|ja, jb, jc〉 =
[

a∏
l=1

b∏
m=1

c∏
n=1

A†(ja
l

)
B†(jb

m

)
C†(jc

n

)] |0〉,

〈ja, jb, jc| = 〈0|
[

a∏
l=1

b∏
m=1

c∏
n=1

A
(
ja

l

)
B
(
jb

m

)
C
(
jc

n

)]
.

With these definitions we find

A(i)|ja, jb, jc〉 = ai|ja\{i}, jb, jc〉,
A†(i)|ja, jb, jc〉 = |ja ∪ {i}, jb, jc〉,

with similar relations for the B and C operators. As in section 2, ai denotes the number
of molecules in the ith voxel when in the state |ja, jb, jc〉. With these definitions,
N (i) = A†(i)A(i) then gives the number operator for species A within the ith voxel.

Denote by 1σ(ja)(j̃
ã
) the indicator function on the set of permutations of ja, σ (ja),

evaluated at j̃
ã
. The commutation properties (19) imply that

〈ja, jb, jc|j̃ ã
, j̃

b̃
, j̃

c̃〉 = δaãδbb̃δcc̃

Ca,b,c
1σ(ja)(j̃

ã
)1σ(jb)(j̃

b̃
)1σ(jc)(j̃

c̃
).

We define the ‘quantum state’ of our stochastic reaction–diffusion field theory, |F(t)〉, as

|F(t)〉 =
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,cF
(a,b,c)(ja, jb, jc, t)|ja, jb, jc〉.

Note, we may recover F (a,b,c)(ja, jb, jc, t) as

F (a,b,c)(ja, jb, jc, t) = 〈ja, jb, jc|F(t)〉,
9
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so that there is a one-to-one correspondence between the collection {F (a,b,c)(·, ·, ·, t)}(a,b,c)

and |F(t)〉. By (7) we have the normalization
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,c〈ja, jb, jc|F(t)〉 = 1. (20)

This may be written more compactly through the introduction of a projection state, 〈| defined
by

〈| = 〈0| e
∑

i∈Z3 A(i)+B(i)+C(i).

Taylor series expanding the exponential and using the commutation properties of the
annihilation and creation operators we recover (20), so that

〈|F(t)〉 = 1.

With these definitions, we may now write the evolution equation for the state |F(t)〉.
Using (8) we find

d

dt
|F(t)〉 = −H |F(t)〉,

where H is the Hamiltonian-like operator

H = −
∑
i∈Z

3

[
DA(�hA†)(i)A(i) + DB(�hB†)(i)B(i) + DC(�hC†)(i)C(i)

]

−
∑
i∈Z

3

[
k+

h3
(A(i)B(i)C†(i) − A†(i)A(i)B†(i)B(i))

− k−(A†(i)B†(i)C(i) − C†(i)C(i))

]
. (21)

Here the discrete Laplacian of a creation operator is defined as

(�hA†)(i) = 1

h2

3∑
d=1

∑
±

(A†(i ± ed) − A†(i)),

where ed denotes a unit vector along the dth coordinate axis of R
3. Note that the form of H

in (21) is the same we would obtain if |F(t)〉 and the creation and annihilation operators were
instead defined in terms of the quantum ‘occupation number’ states |a, b, c〉. This alternative,
equivalent approach was introduced by Peliti [15], and corresponds to directly mapping the
reaction–diffusion master equation (1) to a quantum field theory.

We now consider how to calculate expectations of functions of molecule number and
positions. Denote by A(t) the stochastic process for the number of molecules of species A
at time t and by JA(t)(t) the stochastic process for the positions of the A molecules. Define
B(t), C(t),JB(t) and JC(t) similarly. The expected value of any symmetrized function,
g(A(t),B(t),C(t))(JA(t),JB(t),JC(t)), can then be found as

E[g(A(t),B(t),C(t))(JA(t),JB(t),JC(t))]

=
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,c g(a,b,c)(ja, jb, jc)F (a,b,c)(ja, jb, jc, t),

= 〈|G|F(t)〉 ,

10



J. Phys. A: Math. Theor. 41 (2008) 065003 S A Isaacson

where G is the quantum operator defined by

G|F(t)〉 =
∞∑

a=0,
b=0,
c=0

∑
ja∈�(Z3a),

jb∈�(Z3b),

jc∈�(Z3c)

Ca,b,c g(a,b,c)(ja, jb, jc)F (a,b,c)(ja, jb, jc, t)|ja, jb, jc〉.

As described in [4], one can also derive explicit representations of the operator G in terms
of g(a,b,c)(ja, jb, jc) and creation/annihilation operators. With these definitions we can
calculate, using the quantum field theory formalism, statistical averages for functions of the
stochastic processes representing the state of a spatially distributed chemical system.

4. Formal continuum limit

In section 2 our calculations were exact and mathematically rigorous. We now consider
the relation between the discrete reaction–diffusion master equation (1) and the continuum
‘probability distribution function’ formulation of Doi [4]. This is investigated by taking a
formal continuum limit, h → 0, in the equation of evolution for F (a,b,c) (8). We shall recover
a final model of the same type as ([4], equation (51)). Note, however, that the subsequent
analysis is formal and does not give the mathematically correct continuum limit. As we proved
in [10], for the bimolecular chemical reaction A + B → ∅ with one molecule of A and one
molecule of B initially, in the continuum limit that the mesh spacing approaches zero the
molecules just diffuse relative to each other, never reacting. While the convergence results of
[10] are for a special case, we expect them to generalize to the bimolecular reaction A+B � C
with arbitrary initial numbers of substrate molecules.

What the analysis of this section does show is the connection between the reaction–
diffusion master equation and the continuum probability distribution function model of [4], by
utilizing the formal continuum limit of the particle tracking representation. Despite the loss of
reaction in the continuum limit, this connection is important since, as we discussed in [10] for
the simplified model mentioned above, the formal limiting equation may be rigorously defined
and is an asymptotic approximation to a Smoluchowski diffusion-limited reaction model
[17]. (By a diffusion-limited reaction model we mean a model where molecules undergo
Brownian motion, with bimolecular reactions occurring instantaneously when reactants reach
specified reaction radii). The RDME may therefore by interpreted as a non-convergent attempt
to approximate the formal limiting equations of the particle tracking representation, which
suggests investigating if the RDME is also an asymptotic approximation to the diffusion-
limited reaction model. As we have proven in [10] that the RDME for the two molecule
annihilation reaction is an asymptotic approximation to the corresponding diffusion-limited
reaction model, we expect that the RDME for general biochemical systems is also such an
approximation.

To derive the formal continuum limit of the particle tracking model of section 2,
we begin by rescaling the probability F (a,b,c)(ja, jb, jc, t) to obtain a probability density,
ρ

(a,b,c)
h (qa, qb, qc, t). Here,(qa, qb, qc) are taken to be spatial position vectors that correspond

to the centroid of the voxel labeled by the components of (ja, jb, jc). We define

ρ
(a,b,c)
h (qa, qb, qc, t) = 1

h3(a+b+c)
F (a,b,c)(ja, jb, jc, t). (22)

With this definition, we are assuming that molecules within a mesh voxel are well mixed (i.e.
uniformly distributed). Substituting this rescaling into equation (8), the equation of evolution
for ρ

(a,b,c)
h is then

dρ
(a,b,c)
h

dt
(qa, qb, qc, t) = (

L̃hρ
(a,b,c)
h + R̂hρ

(a,b,c)
h

)
(qa, qb, qc, t). (23)

11
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Note that the diffusion operator, L̃h, is unchanged from equation (8). This is due to the linearity
of the operator and the invariance of the total amounts of each species under the action of the
operator. In contrast, the reaction operator is altered giving the new operator,(
R̃hρ

(a,b,c)
h

)
(qa, qb, qc, t)

= k+

[ c∑
l=1

ρ
(a+1,b+1,c−1)
h

(
qa ∪ qc

l , q
b ∪ qc

l , q
c\qc

l , t
)

−
a∑

l=1

b∑
l̃=1

δh

(
qa

l − qb

l̃

)
ρ

(a,b,c)
h (qa, qb, qc, t)

]

+ k−

[ a∑
l=1

b∑
l̃=1

δh

(
qa

l − qb

l̃

)
ρ

(a−1,b−1,c+1)
h

(
qa\qa

l , q
b\qb

l̃
, qc ∪ qa

l , t
)

−
c∑

l=1

ρ
(a,b,c)
h

(
qa, qb, qc, t

)]
. (24)

We now consider the formal continuum limit of (23). The molecule position vectors,
(qa, qb, qc), now become arbitrary points within our domain, � = R

3. We assume that the
discrete space density, ρ

(a,b,c)
h , converges to a continuum density, ρ(a,b,c). Denote by �a

l the
continuum three-dimensional Laplacian, acting on the lth molecule of species a. Letting

�a =
a∑

l=1

�a
l ,

we find that the diffusion operator, L̃h goes over into the continuum diffusion operator

(L̃ρ(a,b,c))(qa, qb, qc, t) = (DA�a + DB�b + DC�c)ρ(a,b,c)(qa, qb, qc, t). (25)

The discrete delta function, δh

(
qa

l − qb

l̃

)
, will converge to the continuum delta function,

δ
(
qa

l − qb

l̃

)
, though only in a distributional sense. We thus find that the reaction operator, R̃h,

converges to the continuum reaction operator(
R̃ρ(a,b,c)

)(
qa, qb, qc, t

)
= k+

[ c∑
l=1

ρ(a+1,b+1,c−1)
(
qa ∪ qc

l , q
b ∪ qc

l , q
c\qc

l , t
)

−
a∑

l=1

b∑
l̃=1

δ
(
qa

l − qb

l̃

)
ρ(a,b,c)

(
qa, qb, qc, t

)]

+ k−

[ a∑
l=1

b∑
l̃=1

δ
(
qa

l − qb

l̃

)
ρ(a−1,b−1,c+1)

(
qa\qa

l , q
b\qb

l̃
, qc ∪ qa

l , t
)

−
c∑

l=1

ρ(a,b,c)
(
qa, qb, qc, t

)]
. (26)

This definition can be rewritten in the form of the reaction operator from [4, 5] by defining the
reaction rate terms

α+
(
qa

l , q
b
l′ , q

c

l̃

) = k+δ
(
qa

l − qb
l′
)
δ
(
qa

l − qc

l̃

)
,

α−
(
qa

l , q
b
l′ , q

c

l̃

) = k−δ
(
qa

l − qb
l′
)
δ
(
qa

l − qc

l̃

)
.

12



J. Phys. A: Math. Theor. 41 (2008) 065003 S A Isaacson

Equation (26) then becomes

(R̃ρ(a,b,c))(qa, qb, qc, t)

=
[ c∑

l=1

( ∫
�

∫
�

α+
(
q1, q2, q

c
l

)
ρ(a+1,b+1,c−1)

(
qa ∪ q1, q

b ∪ q2, q
c\qc

l , t
)

dq1 dq2

)

−
a∑

l=1

b∑
l̃=1

∫
�

α+
(
qa

l , q
b

l̃
, q3

)
ρ(a,b,c)

(
qa, qb, qc, t

)
dq3

]

+

[ a∑
l=1

b∑
l̃=1

( ∫
�

α−
(
qa

l , q
b

l̃
, q3

)
ρ(a−1,b−1,c+1)

(
qa\qa

l , q
b\qb

l̃
, qc ∪ q3, t

)
dq3

)

−
c∑

l=1

∫
�

∫
�

α−
(
q1, q2, q

c
l

)
ρ(a,b,c)

(
qa, qb, qc, t

)
dq1 dq2

]
. (27)

The equation of evolution, equation (23), now becomes

dρ(a,b,c)

dt
(qa, qb, qc, t) = (L̃ρ(a,b,c) + R̃ρ(a,b,c))(qa, qb, qc, t). (28)

A key point about the preceding analysis is that the formulation given by the operators (25)
and (27) with equation (28) provides a possible initial model of the chemical reaction
A + B � C, for many different possible choices of α+ and α−. We are formally using
point reactions to represent binding interactions, but there is no reason that α+ could not allow
binding within a certain binding radius as is done in [5]. Likewise, there is no reason that
unbinding might not produce two molecules a fixed separation apart. In fact, such interaction
models are commonly used in spatially-continuous stochastic reaction–diffusion formulations
that track individual particles [2]. While the preceding analysis is not rigorous, it does provide
a mechanism to start with a more microscopic molecular interaction model and then, through
an appropriate discretization mechanism, try to obtain a reaction–diffusion master equation
model. (By specifying the reaction interaction terms, and then applying the analysis of this
section and section 2 in the reverse order.)

With regards to the specific molecular interactions derived above, α+ and α−, we note
that the critical steps in the derivation are the assumption that the discrete delta functions
go over into continuum delta functions, and that the solutions to the discrete equations
approach well-defined solutions to the continuum equations. Unfortunately, just giving a
rigorous mathematical meaning to the continuum equations is difficult because of the delta
function coefficients. The definition of solutions to PDEs with delta function coefficients has
been previously considered, but only in certain special cases has been made mathematically
rigorous (see for example [1]). It can be shown rigorously, see [10] for a discussion, that
the formal continuum limit of the simplified model in [10] is an asymptotic approximation
to a diffusion-limited reaction model. Assuming one can also interpret (28) as an asymptotic
approximation to a multi-particle diffusion-limited reaction model, this suggests, as we proved
for the simplified model in [10], that the multi-particle RDME for a bimolecular reaction may
also be interpreted as an asymptotic approximation to a diffusion limited reaction.

5. Conclusions

We have shown how to convert from the RDME, a model tracking the numbers of molecules
of each chemical species in each mesh voxel, to an ‘individual particle’ model tracking the
total population of each chemical species and the locations of all molecules. This alternative

13
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representation of the RDME is of the same form as the spatially continuous stochastic reaction–
diffusion model of [4]. We have also shown how to map the particle tracking model to a
field theory, complementing the known procedures for mapping the RDME to a field theory
[15] and mapping the spatially-continuous model of [4] to a field theory [4]. The form of
the Hamiltonian operator (21) we derive is the same that would be obtained when directly
mapping the RDME to a field theory.

We have shown that the formal, incorrect, continuum limit of the RDME is equivalent to a
coupled system of PDEs that have the form of the ‘probability distribution function’ stochastic
reaction diffusion model of [4]. In our formal limiting equations, bimolecular reactions give
rise to singular coefficients in the PDEs representing point interactions between reactants. We
expect these formal limiting equations to be asymptotic approximations to a Smoluchowski
diffusion-limited reaction model, suggesting the RDME is also such an approximation. Our
rigorous results for the two molecule annihilation reaction in [10] bolster this hypothesis.

The analysis of section 2 also provides a possible mechanism for deriving master equation
type models from the spatially-continuous stochastic reaction–diffusion model of [4]. This
could be achieved by developing appropriate discretizations of the spatially-continuous model,
and then applying the analysis of sections 2 and 4 in reverse.

As has been pointed out by one of the referees, it should be straightforward to extend the
results of this work to arbitrary dimensions. Note, in one dimension we expect the discrete-
space particle tracking representation of the RDME to the converge to the spatially-continuous
particle tracking model.

Finally, as one of the referees has brought to our attention, there is an alternative
Fermion second quantization representation for discrete-space master equation models with
site restrictions [9, 16]. An example of such a master equation is when only one molecule
is allowed to occupy a given lattice site. Master equations with site restrictions can also
be rewritten in a particle tracking type representation. Since they make use of different
bimolecular reaction mechanisms, we would not expect to obtain the same equations as in
section 4 when taking the formal continuum limit. What the formal continuum equations
for these models are, and what they rigorously approximate, remain interesting questions to
explore.
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Appendix. Basic combinatorics results

Consider the vector of objects, m = (m1, . . . , mM), where M gives the number of components
of m. Suppose m contains N distinct objects, and assume that the number of each of the N
distinct objects is given by (n1, . . . , nN). Therefore,

M =
N∑

i=1

ni.

Denote by σ̃ (m) the set of all distinct vectors generated by permutations of the components
of m. Then,
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Identity A.1 The number of elements in σ̃ (m) is

M!
N∏

i=1

1

ni!
.

Let σ (m) denote the set of all vectors, including multiple copies, generated by
permutations of the components of m. σ (m) contains M! elements. Then,

Identity A.2 For any function f (m),

∑
m̃∈σ̃ (m)

f (m̃) =
(

N∏
i=1

1

ni!

) ∑
m̃∈σ(m)

f (m̃) .
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[18] Täuber U C, Howard M and Vollmayr-Lee B P 2005 Applications of field-theoretic renormalization group

methods to reaction–diffusion problems J. Phys. A: Math. Gen. 38 R79–131

15

http://dx.doi.org/10.1088/1478-3967/1/3/001
http://dx.doi.org/10.1023/A:1023233431588
http://dx.doi.org/10.1088/0305-4470/9/9/008
http://dx.doi.org/10.1088/0305-4470/9/9/009
http://dx.doi.org/10.1049/sb:20045021
http://www.arxiv.org/abs/0704.1908
http://dx.doi.org/10.1007/BF01030197
http://dx.doi.org/10.1006/aphy.1997.5712
http://www.math.utah.edu/~isaacson
http://dx.doi.org/10.1137/040605060
http://dx.doi.org/10.1088/0305-4470/27/8/004
http://dx.doi.org/10.1103/RevModPhys.70.979
http://dx.doi.org/10.2307/3212214
http://dx.doi.org/10.1051/jphys:019850046090146900
http://dx.doi.org/10.1088/0305-4470/38/17/R01

	1. Introduction
	2. Reformulation of the RDME to a particle tracking model
	3. Relation to quantum field theory
	4. Formal continuum limit
	5. Conclusions
	Acknowledgments
	Appendix. Basic combinatorics results
	Identity A.1 TheIdentity A.1 The
	identity A.2 For

	References

