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INCORPORATING DIFFUSION IN COMPLEX GEOMETRIES INTO
STOCHASTIC CHEMICAL KINETICS SIMULATIONS∗

SAMUEL A. ISAACSON† AND CHARLES S. PESKIN‡

Abstract. A method is developed for incorporating diffusion of chemicals in complex geometries
into stochastic chemical kinetics simulations. Systems are modeled using the reaction-diffusion master
equation, with jump rates for diffusive motion between mesh cells calculated from the discretization
weights of an embedded boundary method. Since diffusive jumps between cells are treated as first
order reactions, individual realizations of the stochastic process can be created by the Gillespie
method. Numerical convergence results for the underlying embedded boundary method, and for the
stochastic reaction-diffusion method, are presented in two dimensions. A two-dimensional model
of transcription, translation, and nuclear membrane transport in eukaryotic cells is presented to
demonstrate the feasibility of the method in studying cell-wide biological processes.
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1. Introduction. Spatially homogeneous, deterministic mass-action kinetics is
a standard model for the interactions of proteins, genes, and mRNAs within cellular
networks. It assumes that the evolution of any chemical species can be represented by
a continuously varying concentration representing the number of that species within
the cell divided by the cell volume. Fundamentally, however, the numbers of protein
and mRNA molecules within cells are discrete integer variables. The notion of a
continuously varying concentration is only well defined for a sufficiently large number
of the molecules. Moreover, for systems in which spatial effects are important the
population number must not only be large within the cell but also locally within
areas of interest. If the population number is sufficiently small, stochastic effects can
have a noticeable impact on the behavior of the biological system.

The issue of stochasticity in gene expression was discussed in [3]. The authors sub-
sequently demonstrated numerically that the variation of cell fates within a λ-phage
infected population of bacterial cells can be explained as arising from a stochastically
driven gene expression switch [4]. The presence of noise in prokaryotic transcription
and translation was demonstrated experimentally in both [9] and [23]. More recently,
experimental results demonstrating transcriptional noise in eukaryotic cells were pre-
sented in [6].

Spatial effects are present in many biological systems, and hence the spatially
uniform, or well-mixed, assumption will not always hold. Systems in which spatial
effects are known to play a role include Ash1 mRNA localization in budding yeast [1],
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morphogen gradients across egg-polarity genes in Drosophila oocyte [1], and the
synapse-specificity of long-term facilitation in Aplysia [20]. The exact processes by
which proteins and mRNAs move between specific locations, and become localized,
are not yet known definitively. Movement is believed to be composed of a mixture of
diffusion and various forms of active transport. For example, in [10], mRNA movement
within the cytoplasm was found to exhibit diffusive motion, “corralled” diffusive mo-
tion, and active, directionally specific, transport. A probabilistic switching between
these three types of movement was observed in most cases. Moreover, the fraction
of time spent in each of the types of motion was found to differ depending on whether
the mRNA was destined to be localized or not.

Diffusion can be incorporated into deterministic mass-action kinetics through the
use of reaction-diffusion partial differential equations. Molecular noise can be ac-
counted for through the use of stochastic chemical kinetics, but the usual formula-
tion of stochastic chemical kinetics assumes a spatially homogeneous cellular space.
Methods for incorporating diffusion into stochastic chemical kinetics are presented in
[25] and [12]. In both methods, space is divided into a collection of equally sized mesh
cells. A reaction-diffusion master equation is then derived to give the probability of
the system being in a given state. In [12] all transition rates between mesh cells are
identical, and formulas for the transition rates are calculated in this case. In [25] a
discussion of the continuum-limit for the first several moments of the model is given,
but no method is given for calculating the cell-based transition rates.

We present a stochastic reaction-diffusion model for mesh cells of arbitrary vol-
ume and varying diffusive transition rates. In section 3, a method is developed for
calculating diffusive transition rates between mesh cells within a domain containing
multiple complex boundaries. The development of a convergent diffusive approxima-
tion within complex geometries is critical for use in individual (biological) cell models
where the large number of organelles and membranes could have a significant ef-
fect on the overall dynamics of chemical systems. Transition rates are systematically
calculated from terms in an embedded boundary discretization of the Fokker–Planck
equation for a classically diffusing Brownian particle. We expect the reaction-diffusion
master equation to be such a discretization in the case of no reactions and only one
particle. The notion of the master equation as an approximation to a continuum
equation was used in [26] to obtain approximations of the Fokker–Planck equation for
a single particle moving in a one-dimensional potential. The master equation itself
has a special structure, requiring a constraint on the weights of the discretization.
Our method is found to conserve probability and satisfy detailed balance. The un-
derlying embedded boundary discretization converges between first and second order
in practice. As an application of the method, a model of transcription, transla-
tion, and nuclear transport within a two-dimensional eukaryotic cell is developed and
simulated.

We note that the method we develop is an Eulerian method, using an underlying
Cartesian mesh. Other models have been developed using Lagrangian methods that
track the movement of each individual molecule within the system. For example,
in [2] a Lagrangian method was developed for simulating stochastic reaction-diffusion
systems within biological cells. These methods have the benefit of allowing exact
local treatments of particle diffusion; however, they introduce other challenges in how
to handle reactions between particles, detection of particle collisions, and resolving
particle-geometry interactions. Lagrangian methods have been found very useful in
the turbulent reactive flow literature. We point the reader interested in numerical
methods for convection dominated reactive flows to [22] and [19].
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2. Master equation formulation of reaction-diffusion. In section 2.1 the
general abstract definition of the master equation is presented. Several properties of
the transition rates, Wij(t), are pointed out. These properties constrain the form
of the discretization of the Fokker–Planck equation used in generating the diffusive
transition rates for the reaction-diffusion master equation. Sections 2.2 and 2.3 review
the chemical master equation for a spatially homogeneous system, and the Gillespie
method for creating realizations of it. In section 2.4 the reaction-diffusion master
equation is presented, along with the motivation for thinking of its diffusive jump
rates as weights in a spatial-only discretization of the Fokker–Planck equation.

2.1. General master equation. Let X(t) denote an integer valued, continuous
time Markov process. Let Qi(t) = Prob{X(t) = i|X(0) = x0}, and Wij(t)dt =
Prob{X(t + dt) = i|X(t) = j}. By definition, Wij(t) is the transition rate at time t
to go into state i from state j, for i �= j. Then

Qi(t + dt) =

⎛
⎝1 −

∑
j �=i

Wji(t)dt

⎞
⎠Qi(t) +

∑
j �=i

Wij(t)Qj(t)dt + o(dt).(2.1)

This says that the probability of being in state i a small time after time t is the
probability of being there at time t and staying there added to the probability of
being in another state at time t and transitioning to i. The master equation is the
coupled set of ODEs obtained by rearranging and taking the limit dt → 0 of (2.1):

dQi

dt
=

∑
j:j �=i

(Wij(t)Qj(t) −Wji(t)Qi(t))(2.2)

=

⎛
⎝∑

j:j �=i

Wij(t)Qj(t)

⎞
⎠−Wi(t)Qi(t), Wi(t) =

∑
j �=i

Wji(t) � 0.

There are several properties of the structure of (2.2) that we subsequently use. First,
Wij(t) ≥ 0. Second, the term Wij(t)Qj(t) appears twice with opposite sign: once
in the equation for ∂tQi and once in the equation for ∂tQj . This implies that the
amount of probability that flows per unit time into state i due to transitions from
state j to i is exactly the amount of probability that flows per unit time out of state
j due to these same transitions. Finally, the only negative term in the equation for
Qi(t) is given by Wi(t)Qi(t).

2.2. Review of stochastic chemical kinetics. Consider a well-mixed chem-
ical system in a finite closed volume V ; that is, the probability of a given particle
of the system being in an arbitrary subregion of volume dV is dV/V . Further, let
each individual particle’s velocity be a Maxwell–Boltzmann distributed random vari-
able. With these assumptions Gillespie showed in [16] that a chemical system can be
represented as an integer valued, continuous time Markov process satisfying a master
equation.

Let M(t) = (M1 (t) , . . . ,ML (t)) denote the state vector of the chemical system.
M l(t) will be the random variable representing the number of molecules of chemical
species l at time t. Define m = (m1, . . . ,mL) to be a given value of M(t). Denote
by Sl the name of the lth species. Assume there are K possible reactions, with the
function ak(m) giving the probability per unit time of reaction k occurring when
M(t) = m. For example, letting k label the unimolecular (first order) reaction
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Si → Sj , then ak(m) = αmi, where α is the rate constant in units of number of
occurrences of the reaction per molecule of Si per unit time. Letting k′ denote the
index of the bimolecular reaction Si + Sj → Sn, where i �= j, then ak

′
(m) = β mimj .

Here β is the rate constant in units of number of occurrences of the reaction per
molecule of Si and per molecule of Sj , per unit time. Note that if species i and j are
the same, then ak

′
(m) = (β/2)mi(mi−1). Let νk = (ν1

k , . . . , ν
L
k ) be the change in M

that results from one occurrence of reaction k (i.e., M(t) → M(t)+νk). The integers
(ν1

k , . . . , ν
L
k ) define the stoichiometry of the kth reaction. In the notation of section 2.1,

ak(m) = Wm+νk,m, assuming νi �= νk for all i �= k. (If two or more reactions have
identical stoichiometry, their rates are added to obtain the corresponding transition
rate W . Also, if there are no reactions leading from state m′ to m, then Wm,m′ is
zero.) Note that the νlk may be positive or negative (or zero). Then if

P (m, t) ≡ P (m) ≡ Prob{M(t) = m|M(0) = m0},

the master equation for the time evolution of the probability of the system will be

dP (m)

dt
=

K∑
k=1

(
ak(m − νk)P (m − νk) − ak(m)P (m)

)
.(2.3)

This is a coupled set of ODEs over all possible integer values of the components of
the vector m. We shall subsequently refer to (2.3) as the chemical master equation.
Assuming all the νk are distinct, in the notation of section 2.1 the master equation is

dP (m)

dt
=

K∑
k=1

(Wm,m−νk
P (m − νk) −Wm+νk,mP (m)).(2.4)

In both (2.3) and (2.4) the first term in the sum corresponds to all possible transitions
into state m from some prestate, m − νk, while the second term corresponds to all
possible transitions out of state m to m + νk.

We now consider the relationship between the traditional macroscopic chemical
kinetic equations to the master equation derived above. Define C ≡ M/V to be
the vector of random variables for the concentration of each species. Let ãk denote
the concentration dependent form of the rate ak. ãk and ak are related by ãk(c) =
ak(V c)/V , and vice versa ak(m) = ãk(m/V )V . Note that ãk(c) is the expected
number of occurrences of reaction k per unit volume per unit time when the vector
of concentrations is c. From the master equation the mean of Cl, 〈Cl〉, satisfies

d〈Cl〉
dt

=
K∑

k=1

νlk〈ãk (C)〉.

If the averaging operation commutes with the functions ãk, then one obtains the
equations for classical deterministic chemical kinetics,

d〈Cl〉
dt

=
K∑

k=1

νlk ã
k (〈C〉);

however, in general 〈ãk (C)〉 �= ãk (〈C〉), unless ãk is linear. One does expect that
asymptotically, as the population sizes become very large, 〈ãk (C)〉 ≈ ãk (〈C〉). For
a discussion of the validity of the deterministic approximation see [17].
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2.3. Gillespie method. The number of the ODEs comprising the master equa-
tion are very large even for simple chemical systems. Direct solution methods become
impractical, and thus Monte Carlo methods are used instead. These methods cre-
ate realizations of the underlying stochastic process, M(t), governed by the master
equation. Statistics from many realizations can be used to calculate moments of M(t)
and the distribution, P (m, t). In [15] Gillespie presented two equivalent methods that
produce exact realizations of M(t).

One of the two methods, the first reaction method, is based on calculating the
time of occurrence of each reaction independently, as if no other reactions are present
in the system. The reaction with the minimal time to its next occurrence is then
executed, and the system state updated. This process is then repeated until the
simulation reaches the desired final time. In detail, let

p (τ, k|m, t) dτ ≡ Prob{reaction k occurs in the interval [t + τ, t + τ + dτ),

ignoring that another reaction could occur first}.

Then in [15] it is shown that

p (τ, k|m, t) = ak (m) e−ak(m)τ .(2.5)

Knowing m at time t, for each reaction k, a time τk at which reaction k would occur
can be generated by inverting the probability distribution corresponding to probability
density (2.5). The time at which reaction k would occur is given by t + τk, where

τk =
1

ak(m)
ln

1

rk
,

rk being a uniformly distributed random number in [0, 1]. The overall time-evolution
algorithm is then the following:

1. Initialize t = 0, set initial molecule numbers m = m0

2. Calculate ak(m) for all k
3. For each k, generate τk = (ln (1/rk)) /a

k(m)
4. Execute the reaction, k′, with the smallest τk, update m := m + νk′

5. Set the time to t := t + τk′

6. Return to 2.
Optimized versions of Gillespie’s algorithms that substantially decrease the com-

putational work were developed by Gibson and Bruck [14]. Their next reaction method
is equivalent to the first reaction method but requires only one random number per
reaction event. By using a special data structure they reduce finding the reaction with
the minimum τk to a constant work operation, and updating following a reaction to
logarithmic work in the number of reactions, K. For all subsequent Monte Carlo
simulations discussed we use the next reaction method.

2.4. Reaction-diffusion master equation. Let the domain of interest be a
closed volume V . Divide the domain into a series of computational cells indexed by
i = 1, . . . , N . Assume that the size of each cell can be chosen such that within each
cell, independently, the master equation formulation of chemical kinetics holds (see
section 2.2). Transitions of particles between cells are then modeled as first order
reactions.

Let M l
i (t) denote the random variable for the number of particles of species l

in cell i, l = 1, . . . , L. Define M l(t) = (M l
1, . . . ,M

l
N )T to be the spatial vector of
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species l, and M(t) = (M1, . . . ,ML) to be the state matrix of the system. As for
the well-mixed case, let

P (m, t) ≡ P (m) ≡ Prob{M(t) = m|M(0) = m0}.

Let M i(t) = (M1
i , . . . ,M

L
i ), el

i be the matrix all of whose elements are zero except
for the element (i, l), which is one, and let ei be the column vector which has a 1 in
its ith entry and is 0 elsewhere. eiνk will denote the matrix formed by the product
of the column vector ei with the row vector νk. This matrix will be zero everywhere
except for the ith row, which will be equal to νk. It corresponds to the change in
M(t) due to one occurrence of reaction k at location i (i.e., M(t) → M(t) + eiνk).
Let klij denote the jump rate for each individual molecule of the lth chemical species
into cell i from cell j, for i �= j. Since diffusion is treated as a first order reaction,
and since the molecules are assumed to diffuse independently, the total probability
per unit time at time t for one molecule of species l to jump from cell j to cell i is
klijM

l
j(t).

The master equation for the time evolution of P (m, t) is then

dP (m)

dt
=

N∑
i=1

N∑
j=1

L∑
l=1

(
klij

(
ml

j + 1
)
P (m + el

j − el
i) − kljim

l
iP (m)

)
(2.6)

+

N∑
i=1

K∑
k=1

(
aki (mi − νk)P (m − eiνk) − aki (mi)P (m)

)
.

This is a coupled set of ODEs over all possible integer values of the matrix m. Notice
the important point that the reaction probabilities per unit time, aki (m), may now
depend on spatial location. For example, in an eukaryotic cell some reactions may
occur only in the nucleus and others may occur only in the cytoplasm.

Equation (2.6) is separated into two sums. The first term corresponds to diffusive
motion between cells i and j of a given species, l. The second is just the components
of the chemical master equation, but applied at each individual cell. At this point no
specification has been made as to where the rates klij come from, or what their values
should be.

For deterministic reaction-diffusion, let Cl(x, t) denote the concentration and
Dl the diffusion constant of the lth species. Let ãk(C(x, t),x) denote the spatially
varying concentration dependent form of aki (see section 2.2). Then

∂Cl(x, t)

∂t
= DlΔCl +

K∑
k=1

νlk ã
k(C(x, t),x).

To see the relation to the stochastic formulation let Cl
i(t) = M l

i (t)/Vi be the random
variable for the chemical concentration of species l, in cell i. Let ãki denote the
concentration dependent form of aki . ãki and aki are related by ãki (c) = aki (Vic)/Vi,
and vice versa aki (m) = ãki (m/Vi)Vi. From the reaction-diffusion master equation
the average of Cl

i then satisfies

d〈Cl
i〉

dt
=

N∑
j=1

(
Vj

Vi
klij〈Cl

j〉 − klji〈Cl
i〉
)

+

K∑
k=1

νlk〈ãki (Ci)〉.
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Suppose the rates klij could be chosen so that the first term is a discretization of

DlΔCl. The only difference between the deterministic and the means of the stochas-
tic formulation in the continuum limit would then be the noncommutativity of the
reaction terms with averaging; diffusion would be identical.

Returning to the reaction-diffusion master equation (2.6), we expect that the dif-
fusive jump rates should be independent of the chemical reactions present within a
given chemical system. As such, we now consider a chemical system consisting of no
reactions. In this case, we expect each particle of each chemical species to indepen-
dently undergo Brownian motion in the continuum limit as the computational cell size
approaches zero. Since, by construction, the diffusive motion of each particle of each
chemical species is independent in the reaction-diffusion master equation formulation,
it is sufficient to further restrict ourselves to a system consisting of only one chemical
species containing just one particle. With these choices, the reaction-diffusion master
equation reduces to

dP (m)

dt
=

N∑
i=1

N∑
j=1

kij (mj + 1)P (m + ej − ei) − kjimiP (m).(2.7)

Since M(t) is describing one particle, Mi(t) will be zero for all i except the location
the particle is currently at. Let X(t) be the Brownian motion process of the particle.
Then define

Qi(t) ≡ P (ei, t) ≈ Prob{X(t) ∈ Vi|X(0) = x0},

where ei denotes, as before, the unit vector along the ith Cartesian coordinate axis
of R

N . With this definition, Qi(t) is the probability that the particle is in the ith
computational cell. Letting m = ei, equation (2.7) implies

dQi

dt
=

N∑
j=1

kij Qj − kji Qi.(2.8)

Define a probability density for the particle’s position by pi(t) ≡ Qi(t)/Vi. Then pi
satisfies

dpi
dt

=
N∑
j=1

Vj

Vi
kij pj − kji pi.(2.9)

Again, if the rates form a discretization of DΔp, for p the continuum single particle
density, then the continuum limit as cell size goes to zero would be

∂p(x, t)

∂t
= DΔp.(2.10)

This is the Fokker–Planck equation for a single classical Brownian particle.
With these continuum limits in mind, constructing an operator, Lh, of the form

(Lhp)i =

N∑
j=1

Vj

Vi
kij pj − kji pi,

where Lh → Δ as h → 0, will determine the kij . (Here h represents the maximum
length scale associated with a computational cell.) The diffusion jump rates will then
be kij , provided kij ≥ 0 (see section 2.1).
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3. Determining the jump rates. From the results of section 2.4, an appropri-
ate spatial discretization of either the classical deterministic formulation of reaction-
diffusion, or the Fokker–Planck equation for a single Brownian particle, would deter-
mine the jump rates in (2.6). We note that in choosing the jump rates to recover either
one of these two formulations, the macroscopic diffusion of the mean concentration
from the reaction-diffusion master equation, or the microscopic Brownian motion of
independent particles, we will also recover the other formulation. Previous authors
[12], [25] have used the requirement of obtaining macroscopic diffusion of the mean
concentrations given by the reaction-diffusion master equation to derive diffusive jump
rates in the special case of a uniform Cartesian mesh. In this case, it has been shown
that the jump rates, with mesh width h, can be given by

D

h2

for jumps between neighboring mesh cells, and are zero for jumps between non-
neighboring cells. This result has been known from as far back as [11]. In this section,
instead of focusing on recovering macroscopic diffusion of the mean concentrations,
we focus on the mathematically equivalent requirement of reproducing single particle
Brownian motion. We note that if we assume molecules are only moving by diffusion,
then the requirement of recovering single particle Brownian motion in the continuum
limit is a physical necessity for the reaction-diffusion master equation. With this
choice we can derive valid jump rates for diffusion within complex geometries, allow-
ing us to extend the existing methodology to handle arbitrary boundaries. This result
is important since many problems of practical interest contain geometrically complex
domains, such as the movement of molecules within biological cells where there are
many barriers due to organelles and membranes.

To discretize the Laplacian, and hence obtain the diffusive jump rates, boundary
conditions must be specified for the domain of interest; this is discussed in section 3.1.
Section 3.2 derives the embedded boundary method to discretize the Fokker–Planck
equation, and calculates the corresponding diffusive jump rates for the reaction-
diffusion master equation. Some consequences of the specific discretization chosen
are also presented. In section 3.3 the complete algorithm for solving the reaction-
diffusion master equation is summarized. Convergence of the embedded boundary
discretization is demonstrated for several examples in section 3.4, while section 3.5
discusses the convergence of the overall algorithm of section 3.3.

3.1. Boundary conditions. Since we are applying the overall method to sim-
ulations of biochemical networks in eukaryotic cells, which are cells with a nuclear
membrane, we formulate our boundary conditions for this type of domain. Denote
the entirety of the cell by Ω and the cell membrane (i.e., exterior boundary) as ∂Ω.
A eukaryotic cell will also have a nucleus, Ωn ⊂ Ω, a closed volume contained com-
pletely within the interior of the cell. The nuclear membrane, ∂Ωn, encloses the
nucleus, partitioning the cell’s interior into two distinct compartments.

Passage through the cellular membrane will not be allowed, so that the exterior
boundary will have a no-flux Neumann condition. This can, of course, be changed to
a more general flux condition if necessary. The nuclear membrane will be imperme-
able to certain species, requiring again a no-flux Neumann condition, while allowing a
passive flux for others. This second condition will be modeled in this paper by having
the nuclear membrane flux proportional to the jump in probability density, or concen-
tration, across the membrane. Note that this boundary condition assumes molecules
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cross the nuclear membrane independently of each other. The boundary condition
may be derived from a more detailed model of the nuclear membrane as containing
channels, called nuclear pores, through which certain species may diffuse. The nuclear
membrane is thin relative to the size of a eukaryotic cell, and hence the diffusive mo-
tion of molecules within the membrane will equilibrate rapidly. This implies that the
diffusive flux within the membrane can be assumed spatially constant. In addition,
the number of nuclear pores is large enough that we approximate them as a fixed
background density within the membrane. Combining these two approximations, and
idealizing the membrane as infinitely thin, implies that the flux through the nuclear
membrane is proportional to the difference in probability density, or concentration,
across the membrane. Note that in certain situations this boundary condition would
need to be modified to a more physically detailed model. One such example would be
if the number of molecules crossing the nuclear membrane can become large enough
to saturate the nuclear pores.

Consider a single particle moving by classical Brownian motion within the cell.
Let p(x, t) denote the probability density for the position of the particle. Then within
both the nucleus, Ωn, and the cytoplasm, Ω \ Ωn, p(x, t) will satisfy (2.10). (Here
Ω \ Ωn denotes the set of points within Ω that are not also contained in Ωn.) Let
[p]n denote the jump in p(x, t) across the nuclear membrane. Define by ρ the nuclear
membrane permeability, and by D the diffusion constant of the particle. Let η denote
the outward pointing normal to a given surface. Then, incorporating the assumed
boundary conditions, p(x, t) satisfies

∂p

∂t
= DΔp in Ω,

∂p

∂η
= 0 on ∂Ω,

−D
∂p

∂η
= −ρ [p]n on ∂Ωn,

(3.1)

with the initial condition p(x, 0) = δ(x − x0), where x0 is the known initial position
of the particle. A discretization of these equations that has the general form of (2.9)
will determine the jump rates in the reaction-diffusion master equation.

The corresponding multiple species, deterministic reaction-diffusion model for
the assumed boundary conditions follows. Let [Cl]n denote the jump in Cl across
the nuclear membrane, ρl the nuclear membrane permeability, and Dl the diffusion
constant of the lth species. Then

∂Cl(x, t)

∂t
= DlΔCl +

K∑
k=1

νlk ã
k(C(x, t),x) in Ω,

∂Cl(x, t)

∂η
= 0 on ∂Ω,

−Dl ∂C
l(x, t)

∂η
= −ρl

[
Cl

]
n

on ∂Ωn,

(3.2)

with the initial condition, Cl(x, 0) = C0(x).

3.2. Numerical discretization. For simplicity, we discretize (3.1) instead of
the deterministic reaction-diffusion formulation (3.2). We may do this because our
purpose is not to obtain a numerical scheme for the deterministic equations but instead
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Fig. 1. Two-dimensional Cartesian mesh cells cut by nuclear membrane. The darker region
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i+1/2,j
gives the length of the piece of

the face connecting cells (i, j) and (i + 1, j) that is within the cytoplasmic domain. The remaining

Aα
i,j values, for α a given domain, are defined similarly. ABn

i,j is the length of the piece of the nuclear

membrane within the cell (i, j). Xi,j gives the center of the Cartesian cell at location (i, j). Also,
V α
i,j (not shown) gives the area of the portion of cell (i, j) within the domain α.

to obtain the jump rates for use in our stochastic simulation, and, as was shown in
section 2.4, the jump rates are the same whether we use (3.1) or the full deterministic
reaction-diffusion system (3.2). For the remainder of this section, we use the word
“cell” to refer to a cell of the Cartesian computational mesh, and we specify “biological
cell” when that is what we mean. We embed Ω in a Cartesian mesh with cell centers
xi and mesh width h. There are three different domains contained in this description:
the nuclear space, Ωn, the cytoplasm, Ω \Ωn, and the space exterior to the biological
cell. The total computational domain within which the biological cell is embedded is
taken to be a square.

Define three separate solutions to (3.1), corresponding to each of the three do-
mains: pnuc, the value of p(x, t) within Ωn, pcyt, the value of p(x, t) within Ω\Ωn, and
pext, the value of p outside the biological cell. Since the particle is assumed to never
leave Ω, pext will be zero. Denote by pα the value of the solution for domain α, where
α ∈ {nuc, cyt, ext}. Each of these solutions is assumed to be smoothly extendable
across the boundaries of its region of definition. Note that the actual solution p(x, t)
will not be smooth across either the nuclear or cellular membrane, but its value on
either side of each of these membranes can be smoothly extended to the other side.

For spatial dimension d, let i ∈ Z
d denote the index vector for mesh cells. With

the smooth extension assumption, a cell-centered solution value, pαi , can always be
defined within cells containing some portion of the domain α. For a cell completely
within this domain only one solution value will be considered, pαi . If a cell is split by
one of the membranes, then two cell-centered solution values will be stored for the
cell. It is assumed that at most one boundary intersects a given cell. For example, in
Figure 1, which shows the two-dimensional case for simplicity, cell i = (i, j) is split
by the nuclear membrane; hence, there would be two solution values stored for this
cell, pnuc

i and pcyt
i . These two solution values are subsequently used to approximate

the boundary condition on the membrane. They also allow, in the master equation
formulation, separate probabilities of the particle being in either portion of the cell.
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Again, as the particle cannot cross ∂Ω, pext
i = 0 for all i. As we know pext

i , multiple
values need not be stored for cells cut by ∂Ω. If the particle could cross the cellular
membrane, then pext

i would not necessarily be zero, and multiple values would be
needed in cells split by ∂Ω.

Figure 1 defines several geometric quantities associated with cells that are used in
the numerical discretization. Let ek denote the unit vector along the kth coordinate
axis of R

d. Define by

F (x, t) = −D∇p(3.3)

the probability flux vector per unit area. Let F α be the flux vector of the domain α
solution and (Fk)

α the kth component of F α. ηα will denote the outward pointing,
with respect to domain α, normal to a given surface. Following the conservative
discretization method in [21], for all cells, i, in which pαi is defined,

dpαi
dt

= −(∇ · F α)i

(3.4)

≈ − 1

V α
i

∫
V α

i

∇ · F α dV = − 1

V α
i

∫
∂V α

i

F α · ηα dS

= − 1

V α
i

(∑
±

d∑
k=1

∫
Aα

i±ek

F α · ηα, dS +

∫
Bn

F α · ηα dS +

∫
Be

F α · ηα dS

)

≈ − 1

V α
i

(
d∑

k=1

(
Aα

i+ 1
2 ek

(Fk)
α
i+ 1

2 ek
−Aα

i− 1
2 ek

(Fk)
α
i− 1

2 ek

)
+ ABn

i FBn

i · ηBn

i

)
.

Here, Bn = ∂Ωn ∩ ∂V α
i and Be = ∂Ω ∩ ∂V α

i . The surface integral over Be is identi-
cally zero due to the no-flux boundary condition at ∂Ω. If a nonzero flux boundary
condition is specified instead, then the integral would contribute another term of the
form

− 1

V α
i

ABe

i FBe

i · ηBe

i

in the last line of (3.4).
To give a valid reaction-diffusion master equation the fluxes are chosen as the

standard full-face centered difference

(Fk)
α
i± 1

2 ek
= ∓D

pαi±ek
− pαi

h
.

From the nuclear membrane boundary condition

FBn

i · ηBn

i = −ρ [p]
Bn

i .

To enforce this jump condition the cell-centered solution value for the domain on the
other side of the nuclear membrane is used. For example, if α = nuc, then pα

′

i is used,
where α′ = cyt. Vice versa, if α = cyt, then α′ = nuc. Using this definition, the
boundary condition is approximated by choosing

ρ [p]
Bn

i ≡ ρ(pα
′

i − pαi ).
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With all the flux terms specified, the final discretization is then

dpαi
dt

=
D

V α
i h

(∑
±

d∑
k=1

Aα
i± 1

2 ek

(
pαi±ek

− pαi
))

+
ABn

i ρ

V α
i

(pα
′

i − pαi ).(3.5)

For cells that do not intersect any boundary the discretization reduces to the standard
five- (seven-) point discrete Laplacian in two dimensions (three dimensions).

Defining the probability of the particle being in the domain α portion of the ith
cell as

Qα
i (t) = pαi V

α
i ≈ Prob{X(t) ∈ V α

i |X(0) = x0},

the discretization can be rewritten as

dQα
i

dt
=

D

h

(∑
±

d∑
k=1

Aα
i± 1

2 ek

V α
i±ek

Qα
i±ek

−
Aα

i±ek

V α
i

Qα
i

)
+ ABn

i ρ

(
Qα′

i

V α′
i

− Qα
i

V α
i

)
.(3.6)

The first term in (3.6) represents diffusive motion between computational cells, while
the second represents motion across the nuclear membrane within one computational
cell. Let the two components of a split computational cell be represented as separate
computational cells. In this form, all movement between computational cells within
the same domain is by diffusive jumps, while movement between computational cells
of different domains is by jumps determined by the membrane fluxes. Despite the
appearance of the membrane flux terms, this equation, with an appropriate index
relabeling to account for the multiple components of a split computational cell, still has
the same form as (2.8). Hence, all motion is still represented as first order reactions,

with jump rates given by the coefficients of the Q
{·}
{·} terms.

Taking Aα
ij to be the area of the domain α face shared by cells i and j, the jump

rate from the domain α component of cell j to the domain α component of cell i is

kαij =
DAα

ij

hV α
j

.(3.7)

For strictly interior cells this reduces to

kαij =
D

h2
.

The jump rate across the nuclear membrane in cell i from domain α′ to domain α is

kαα
′

i =
ABn

i ρ

V α′
i

.(3.8)

A similar equation holds for the jump from domain α to domain α′. Note that kαij
and kαji are unequal in general because V α

i may not be equal to V α
j . Similarly, kαα

′

i

and kα
′α

i will also differ as V α
i may not be equal to V α′

i .
There is a fundamental difference in the scaling between (3.7), which scales like

1/h2, and (3.8), which scales like 1/h. This difference arises because the flux for dif-
fusive motion is proportional to the gradient of the density, while the flux across the
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nuclear membrane is proportional to the difference in the density across the mem-
brane.

A consequence of the conservative discretization form is that total probability is
conserved: ∑

α

∑
i∈α

dQα
i

dt
=

∑
α

∑
i∈α

dpαi
dt

V α
i = 0.

The master equation approximation will also satisfy the principle of detailed balance—
the statement that at thermodynamic equilibrium the unidirectional probability flux
from cell i to cell j is equal to the unidirectional probability flux from cell j to cell
i. We expect detailed balance to hold, as (3.1) forms a closed and isolated system
due to the no-flux cellular membrane condition and passive nuclear membrane flux
(no active transport). Letting peq(x, t) = peq be the constant equilibrium solution to
the continuous problem, (Qeq)αi = peqV α

i will be the equilibrium probability of the
Brownian particle being in the domain α component of cell i. For Aα

ij , the area of
the domain α face between cells i and j, the detailed balance condition is

kαji(Q
eq)αi = kαij(Q

eq)αj

⇐⇒
DAα

ij

hV α
i

(Qeq)αi =
DAα

ij

hV α
j

(Qeq)αj

⇐⇒ (Qeq)αi
V α

i

=
(Qeq)αj
V α

j

,

which holds by the definitions of (Qeq)αi and (Qeq)αj . For jumps across a membrane
between domains α and α′,

kα
′α

i (Qeq)αi = kαα
′

i (Qeq)α
′

i

⇐⇒ ABn

i ρ

V α
i

(Qeq)αi =
ABn

i ρ

V α′
i

(Qeq)α
′

i

⇐⇒ (Qeq)αi
V α

i

=
(Qeq)α

′

i

V α′
i

,

which again holds by the definitions of (Qeq)αi and (Qeq)α
′

i . Note that an active
transport boundary condition at the cellular membrane could make the system open,
in which case detailed balance would no longer be expected to hold. Moreover, an
active transport mechanism at the nuclear membrane would also prevent the system
from coming to thermodynamic equilibrium and would result in a steady state in
which the above relationships across the nuclear membrane would be violated. This
would not affect the rate constants for other (passive) processes, however, which would
therefore still satisfy the conditions derived from the principle of detailed balance.

For comparison to our discretization, note that in [21] (Fk)i± 1
2 ek

is chosen to be
the standard centered difference approximation when the kth face does not intersect
a boundary. This leads to the five- (seven-) point Laplacian as the discretization for
strictly interior cells. For faces cut by the boundary, [21] interpolates between the
centered difference flux in neighboring cells to approximate the flux at the midpoint
of the cut face. This method leads to a second order accurate approximation to the
Laplacian, but does not give a valid master equation for the continuous time–discrete
space discretization. To see why, note that the general form of the master equation
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for the probability, Qi, of being at site i with transition probability per unit time
Wji � 0 is given by (2.2). In general interpolation will introduce negative weights
Wji or Wij into the ith equation. Furthermore, interpolation violates the condition
that if the ith equation contains a term WijQj , then the jth equation should contain
a term −WijQj .

An alternative discretization method is presented in [13] that accounts for the
boundary by using the standard five- (seven-) point Laplacian at all locations and
adding an extra forcing term. As the master equation has no forcing terms this
method would not give an equation that could be realized by the Gillespie method.

3.3. Overall method. Using the discretization from the previous section, real-
izations of the stochastic process described by the reaction-diffusion master equation
can be created using the Gillespie method. The overall simulation algorithm is as
follows:

1. Initialization:
(a) Given the membrane locations, calculate Aα

i±ek
, V α

i , and ABn

i for each
location, i, each direction, ek, and each domain, α.

(b) From (3.7) and (3.8) calculate the jump rates for all species, within all
Cartesian cells containing some part of Ω.

(c) For each piece of a Cartesian cell, calculate the rates of all chemical
reactions that can occur there. For reactions with volume dependent
rates use V α

i to change the rate constants to units of reciprocal time.
2. Time Evolution:

(a) Simulate individual realizations of the stochastic process described by
the reaction-diffusion master equation using the Gillespie method. Dif-
fusive and transmembrane solute motion are represented as first order
reactions, using the jump rates calculated in step 1(b). Within each com-
ponent of a cell, the rates from step 1(c) are used to simulate chemical
reactions.

3. Output:
(a) To estimate moments or distributions, use statistics from many simula-

tions.

3.4. Convergence of the numerical discretization. The convergence of the
discretization provided by (3.5) is illustrated in two dimensions for both the Poisson
equation and diffusion equation with circular boundaries. The method was found to
converge between first and second order spatially. Let (uh)

α
i denote the numerical

solution to the Poisson problem, and uh the vector whose components are given by
(uh)

α
i . Define the maximum norm, ‖uh‖∞, as

‖uh‖∞ = max
α,i∈α

|(uh)
α
i |.

A volume weighted two norm, ‖uh‖w2 , is defined as

‖uh‖w2 =

(∑
α

∑
i∈α

((uh)
α
i )

2
V α

i

) 1
2

.

Let (un
h)

α
i denote the numerical solution to the diffusion equation at time tn, un

h the
solution vector at time tn, and uh the solution over all spatial locations, domains, and
times. The maximum norm over all time is defined as maxn ‖un

h‖∞. As in section 3.1,
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Fig. 2. Convergence results for Poisson equation solutions; star is two norm error and circle
is maximum norm error. These errors are plotted against the mesh width dx on log-log plots. The
empirical order of accuracy is m, which is the slope of the best fit straight line in each case.

∂Ω will denote the cell membrane, or outer boundary, while ∂Ωn will denote the
nuclear membrane, or inner boundary. In all of the examples considered in this
section, the two boundaries are concentric circles with radii 1 and 1/2, respectively.
The domain into which the circles are embedded is taken, for a given mesh width h,
to be the square centered at the origin with sides of length 2 + 4h. This provides
a separation between the boundary of the computational domain and the embedded
boundaries.

Figure 2(a) shows the convergence of the discretization for the Poisson equation
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with just the outer boundary. The equations are

Δu = f(x) in Ω,

∂u

∂η
= 0 on ∂Ω,

(3.9)

where f(x) was chosen so that the exact solution was

u =
r4

4
− r3

3
, r ≤ 1,(3.10)

with u = 0 for r > 1. The two norm error converged at order 1.6, while the maximum
norm error converged at order 1.7.

An angular dependence was added to f(x) to give the exact solution

u =

(
r4

4
− r3

3

)
cos θ, r ≤ 1,(3.11)

with u = 0 for r > 1. Figure 2(b) shows the convergence of the errors for this problem.
The θ dependence actually improves the convergence, so that the two norm error is
order 1.86, while the maximum norm error now converges at order 1.89.

Figure 2(c) shows the convergence of the discretization for the Poisson equation
with both boundaries. The equations are

Δu = f(x) in Ω,

∂u

∂η
= 0 on ∂Ω,

−∂u

∂η
= −π [u]n on ∂Ωn,

(3.12)

where f(x) was chosen so that the exact solution was

u =

⎧⎪⎨
⎪⎩

cosπr + sinπr in Ωn,

cosπr in Ω \ Ωn,

0 outside Ω.

(3.13)

The jump condition at the interior boundary reduces the order of convergence to
1.15 in the two norm and 1.23 in the maximum norm.

Figure 3(a) shows the convergence of the discretization for the diffusion equation
with just the exterior boundary. The final time, at which the two norm and maximum
norm errors were measured, was taken to be tf = .025. At this time the solution
was still far from equilibrium. Δt/h was fixed at about tf/L, where L was the
diameter of the outer boundary. For the examples in Figure 3, Δt/h ≈ .013. The
time integration was performed using the second order, L0 stable, implicit Runge–
Kutta method mentioned in [21]. Similar results were obtained for a Crank–Nicolson
discretization. The equations are

∂u

∂t
= Δu + f(x, t) in Ω,

∂u

∂η
= 0 on ∂Ω,

(3.14)
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Fig. 3. Convergence results for diffusion equation solutions; star is two norm error at tf , circle
is the maximum norm error at tf , and diamond is the maximum of the maximum norm error over
all time. These errors are plotted against the mesh width dx on log-log plots. The empirical order
of accuracy is m, which is the slope of the best fit straight line in each case.

where f(x, t) was chosen so that the exact solution was

u =

(
r4

4
− r3

3

)
e−20t, r ≤ 1,(3.15)

with u = 0 for r > 1. At tf , the two norm error converged at about order 2.01, and
the maximum norm error converged at about order 1.84. The maximum over all time
points of the maximum norm converged at about order 1.81.

Figure 3(b) shows the convergence of the discretization for the diffusion equation
with both boundaries. Note that the same time discretization was used as above,
again with Δt/h ≈ .013. The equations are

∂u

∂t
= Δu + f(x, t) in Ω,

∂u

∂η
= 0 on ∂Ω,

−∂u

∂η
= − [u]n on ∂Ωn,

(3.16)

where f(x, t) was chosen so that the exact solution was

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
br4

4 + ar3

3 + ar5

5

)
e−20t in Ωn,(

r3

3 − r4

4

)
e−20t in Ω \ Ωn,

0 outside Ω.

(3.17)

a and b were chosen to satisfy the jump boundary condition at r = 1/2. At tf the two
norm error converged at about order 2.06, and the maximum norm error converged at
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Fig. 4. Convergence of the mean of Gillespie simulations to the numerical solution to (3.1).
Here the error is given by the maximum absolute difference over all times and spatial locations
between the Gillespie simulation estimate and the numerical solution. A 37 by 37 mesh was used
with mesh width 2/33, D = 1, and ρ = 1. The particle was started at the center of the domain for
all simulations. m gives the slope of the best fit line to the data.

about order 1.75. The maximum over all time points of the maximum norm converged
at about order 1.68.

3.5. Convergence of the overall method. The overall method presented in
section 3.3 has two sources of error associated with it: sampling error and error due
to the spatial discretization. The Gillespie method provides exact realizations of the
stochastic process defined by the reaction-diffusion master equation, hence the error in
any individual realization is due solely to the spatial discretization. From the central
limit theorem, for a fixed mesh size, we expect the error between the mean population
levels from N simulations and the means of the reaction-diffusion master equation
to be approximately O(1/

√
N). Note that the constant in the O(1/

√
N) term will

depend on the mesh size. With a sufficient number of samples the joint probability
distribution, for a fixed mesh size, can be estimated to any desired accuracy, but the
required number of samples might be very large.

As an example, consider a single particle moving within a two-dimensional bi-
ological cell. Assume the cell has a circular cellular membrane of radius 1, and a
circular nuclear membrane of radius 1/2. The particle’s dynamics are assumed to be
given by (3.1), with D = 1 and ρ = 1. Since there is only one particle, the mean
number of the particle in a given region is just the probability of the particle being in
that region. As the reaction-diffusion master equation is in terms of the population
levels of the particle at different locations, its mean should converge to the solution of
(3.1) as h goes to zero. Figure 4 shows the maximum error over all times between the
mean of N Gillespie simulations and the numerical solution to (3.1), as the number
of samples is increased. Here h is fixed at 2/33, for a 37 by 37 mesh. Notice that the
error decreases like 1/

√
N .

Having obtained the distribution given by the reaction-diffusion master equation,
there is still the question of how accurate a representation of the dynamics of the
system it gives. It is not clear that the reaction-diffusion master equation has a well-
defined continuum limit as h goes to zero. Instead, it is generally considered valid
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only for a range of h values, and there are several simultaneous physical conditions
which h should satisfy. First, h should be significantly larger than the mean free
path, λ, between the elastic collisions driving diffusion. This condition ensures that
the system can be considered in local equilibrium within a computational cell because
of many nonreactive collisions. Note, however, that to ensure that the system is
accurately resolving local behavior, and also that the approximation of diffusion as
jumps between cells is reasonable, h should be significantly smaller than the length
scale of the entire system, L. Summarizing these constraints,

L � h � λ.

As we now show, h also needs to be chosen large enough (!) that the system can be
considered in local equilibrium and well mixed within each mesh cell on the time scale
of the fastest bimolecular reactions. This assumption underlies the use of stochastic
chemical kinetics independently within each mesh cell. For this to hold, the time
scale for the particle to diffuse throughout a mesh cell should be much faster than
the time scale for the fastest bimolecular chemical reaction. The time scale to diffuse
throughout a region of length scale h is approximately h2/D. For a bimolecular
reaction, the time scale with rate constant k is h3/k for a mesh cell of volume h3.
(Recall that the units of the rate constant of a bimolecular reaction are volume per
unit time.) Hence, it is necessary that

h3

k
� h2

D
,

which implies that

h � k

D
.

Thus, the rate constant for a bimolecular reaction places a fundamental lower limit
on the spatial size of mesh cells. Fortunately, for cellular processes and the molecules
involved in them, k/D is generally not large enough to impose a significant restriction
on h. In summary, letting k denote the rate constant of the fastest bimolecular
reaction,

L � h � max

(
λ,

k

D

)
.

In these inequalities D is the diffusion coefficient of a particular molecular species and
k refers to the fastest bimolecular reaction in which that species participates. Such
inequalities must hold simultaneously for all species under consideration. Note that
a first order reaction does not restrict the mesh size in any manner since it generally
represents an internal molecular event, and is not dependent on the system being well
mixed locally.

As of yet, the reaction-diffusion master equation has not been derived from more
microscopic physical models. Its validity has been verified numerically in [5] through
comparison with microscopic hard sphere models that track individual particle po-
sitions and momenta. One might also hope that, for sufficiently fast diffusion, the
results from the reaction-diffusion master equation applied to an initially well-mixed
system would agree over a range of h values with the spatially homogeneous chemical
master equation. For example, consider the simple chemical reaction A + B → C,
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Fig. 5. Average number of reactions in stochastic diffusion simulations, given by stars, com-
pared to the exact solution for the expected number of reactions of the spatially homogeneous chemical
master equation, given by the solid straight line. Error bars give 99.7 percent confidence intervals
about the data points. The error bars are calculated using the sampled variance. N gives the number
of mesh points in each direction. For each data point, 3000 sample realizations were used to cal-
culate the average number of reactions. The dashed lines give the predicted 99.7 percent confidence
interval, for 3000 samples, about the exact mean using the exact variance of the well-mixed master
equation. Data is from t = .1, a time at which approximately half the A and half the B chemicals
have been converted to C. Note the drastically expanded vertical scale.

within a 1 unit by 1 unit square. The exact solution, at any time, for the average
number of reactions in the spatially homogeneous chemical master equation is given
in [18]. This reduces the statistical error in the problem to that in estimating the av-
erage number of reactions from the reaction-diffusion master equation. 100 molecules
of A and 100 of B are each started randomly distributed throughout the domain. No-
flux boundary conditions were assumed for the diffusion of chemicals, but periodic
boundary conditions were also tested with no significant impact on the results. With
bimolecular rate constant, .0001, and a diffusion constant of 100 for each species,
k/D = .000001. Hence, by the preceding arguments h should only need to be greater
than .000001 for the reaction-diffusion master equation to be valid. Figure 5 shows
that as the number of mesh points, N , is increased, the average number of reac-
tions from spatial simulations agrees with the exact number of reactions given by the
spatially homogeneous chemical master equation to statistical error.

4. Transcription, translation, transport model. As an application of the
method presented in section 3.3 we present a model of transcription, nuclear export,
translation, and nuclear import in eukaryotes. While the model is simplified, and
uses transcription and translation models that are more appropriate for a prokary-
otes, it demonstrates the feasibility of the method in simulating biological networks.
Section 4.1 describes the basic molecular cell biology necessary to understand the
biochemical reaction model of section 4.2. Section 4.3 shows the time evolution of one
realization of the model.

4.1. Background biology. The process by which a functional protein is pro-
duced from a segment of DNA that codes for it, called a gene, is a complex series
of chemical events. In a coarsest description, the gene is first transcribed to produce
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a copy of itself called an mRNA. The mRNA is a linear sequence of nucleotides,
every three of which comprise an element of a code representing an amino acid. The
mRNA is then translated by special cellular machinery whereby the linear sequence
of nucleotides is read, and the corresponding sequence of amino acids that the mRNA
codes for is assembled. The polypeptide chain of amino acids typically undergoes
further chemical and structural modifications to then form a functional protein.

For eukaryotes this situation is more complicated: transcription occurs in the
nucleus and translation occurs in the cytoplasm of the cell. Between transcription and
translation there is then an additional step that is required involving the movement
of the mRNA out of the nucleus. This nuclear export process requires a series of
chemical events; it cannot occur simply through diffusion of the mRNA. Similarly,
those proteins that influence gene expression must be imported into the nucleus to be
effective.

Large protein complexes form pores in the nuclear membrane through which all
transmembrane traffic flows. These nuclear pore complexes are normally only wide
enough for small molecules of less than 9 nanometers to pass through by free diffu-
sion. Large molecules, such as mRNAs and most proteins, require the assistance of
nuclear export and import receptors, which allow the pores effectively to dilate so
that molecules of up to 26 nanometers can pass [1].

We shall be interested in the export of newly transcribed mRNA from the nucleus,
and the import of the resulting protein product back into the nucleus. These two
pathways are believed to be distinct in the nuclear receptors used, and in the biasing
factors that confer directionality to the process (so that, for example, newly exported
mRNA does not get reimported into the nucleus). Since the general mRNA export
pathway is still unsettled, we shall use the same pathway for modeling mRNA export
and protein import. This pathway is driven by a nuclear membrane RanGTP gradient
that confers directionality to the movement of cargo across the membrane. A subset
of the full RanGTP cycle model presented in [24] is used to account for the movement
of receptors and their cargo. The RanGTP nuclear transport process is sometimes
referred to as “active” because there is an energy expenditure in maintaining the
gradient of RanGTP across the nuclear membrane. In contrast, the actual movement
of cargo across the nuclear membrane is believed to be passive. Note that this pathway
is used for the export of some mRNAs, for example, the export of incompletely spliced
HIV mRNA encoding viral structural proteins [7].

The basic model presented in the next section is built on the pathway of tran-
scription of one gene to produce mRNA, nuclear export of the mRNA, translation of
the mRNA within the cytoplasm, and import of the resulting protein product back
into the nucleus. Protein import plays an important role in many transcriptional net-
works, allowing the protein product of one gene to bind and regulate the expression of
another. Several important steps in the transcription-translation cycle for eukaryotes
are not modeled, including splicing, the opening of the chromatin to allow physical
access to the gene, and the assembly of the transcription initiation complex.

4.2. Chemical model. The eukaryotic cell is modeled in two dimensions as
two concentric circles, representing the plasma and nuclear membranes. The plasma
membrane radius is taken to be 11.81μm, while the nuclear membrane radius is 5μm.
The transcription and translation models used are based on those presented in [8].
Specifically, the gene of interest has several states. DNA denotes that the gene is
free of RNA polymerase II, hereafter RNAP, the enzyme which reads the nucleotides
comprising the gene and then incorporates the corresponding nucleoside triphospate
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into the growing mRNA transcript. DNA0 will denote that the RNAP is bound to
the gene’s promoter and ready to begin transcription. DNAl will denote that the
first l of the nucleotides forming the gene have been read and incorporated into the
mRNA, with M giving the total number of nucleotides in the gene. Finally, the num-
ber of mRNA molecules within spatial computational cell i is given by mRNAi. For
simplicity, the gene is assumed to be localized in the center of the nucleus, which will
have index icenter. The concentration of both RNAP and the nucleoside triphospates
that are added to the mRNA transcript are assumed fixed so that transitions be-
tween the different DNA states are first order reactions. With these definitions, the
transcriptional reactions, all defined solely at the cell center, are then

DNA → DNA0,

DNAl−1 → DNAl, l = 1, . . . ,M − 1,

DNAL−1 → mRNAicenter
+ DNA.

The rates for these reactions are, respectively, .05 s−1, 30 s−1, and 30 s−1. The number
of nucleotides in the gene, M , is chosen to be 999.

Newly transcribed mRNA is assumed to diffuse freely throughout the nucleus un-
til entering the export pathway. The mRNA export model is based on the RanGTP
export system. Denote by NR the nuclear export receptor to which mRNA can bind;
by Rt, RanGTP; by Rd, RanGDP; by Rb, RanBP1; and by NR–Rt the nuclear
receptor complexed with RanGTP. All five are assumed to be at steady state concen-
trations, and uniformly distributed throughout the nucleus and cytoplasm. Note that
the steady state concentrations are not assumed to be the same within the nucleus
and cytoplasm, simply within each individually. Steady state concentrations and sub-
sequent reaction rates were based on the data in [24]. The export process consists of
three reactions, beginning with the binding of the export receptor-RanGTP complex
to nuclear mRNA. Once this has occurred, the nuclear membrane is assumed to be
permeable to the complex. At all locations within the cytoplasm the complex can
then bind RanBP1, which subsequently induces the release of the mRNA from the
complex. The reactions are

mRNAi + NR–Rti → mRNA–NR–Rti within nucleus,

mRNA–NR–Rti + Rbi � mRNA–NR–Rt–Rbi within cytoplasm,

mRNA–NR–Rt–Rbi → mRNAi + NRi + Rbi + Rdi within cytoplasm.

Using the assumption of constant concentrations, we can reduce these reactions to
the following four:

mRNAi → mRNA–NR–Rti within nucleus,

mRNA–NR–Rti � mRNA–NR–Rt–Rbi within cytoplasm,

mRNA–NR–Rt–Rbi → mRNAi within cytoplasm.

The rates for these reactions are, respectively, 1184.5 s−1, 298.93 s−1 for the forward,
.5 s−1 for the reverse, and 51.19 s−1.

Once the mRNA is free within the cytoplasm, it can then associate with ri-
bosomes, the molecular machines on which translation occurs. The ribosomes are
assumed to be uniformly distributed throughout the cytoplasm as a constant back-
ground concentration. The translation process begins with the binding of an mRNA
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to a ribosome to form a complex that is ready to translate, denoted by mRNA0
i . As

the ribosomes are very large, it is assumed that the translation process is immobile.
Translation then consists of a series of elongation steps by which the mRNA is moved
through the ribosome and read, and each set of three nucleotides is translated into
the appropriate amino acid. This amino acid is then added to the growing polypep-
tide that will become the protein. Let mRNAl denote that l amino acids have been
incorporated into the polypeptide chain, l = 1, . . . , N , where N = M/3. Denote by
P protein. Assuming all amino acid concentrations are spatially homogeneous and at
steady state, the translation process reduces to the following set of reactions:

mRNAi → mRNA0
i within cytoplasm,

mRNAl−1
i → mRNAl

i, l = 1, . . . , N − 1, within cytoplasm,

mRNAN−1
i → Pi + mRNAi within cytoplasm.

The rates for these reactions are, respectively, .5 s−1, 33 s−1, and 33 s−1.
Protein may freely diffuse within both the nucleus and the cytoplasm; however,

it may not freely cross the nuclear membrane. Instead, it uses the RanGTP nuclear
import process to enter the nucleus. This process consists of two reactions: protein
binding to nuclear import receptor within the cytoplasm, and unbinding of protein
from the receptor upon binding of RanGTP within the nucleus. The reactions are
then

Pi + NRi → P–NRi within cytoplasm,

P–NRi + Rti → Pi + NR–Rti within nucleus.

Using the constant concentration assumption, these reactions can be reduced to the
following first order reactions:

Pi → P–NRi within cytoplasm,

P–NRi → Pi within nucleus.

The rates for these reactions are, respectively, 1218.25 s−1 and 1.23 s−1.
A feedback mechanism is incorporated into the model by allowing the protein to

repress the expression of its own gene. Denoting by DNArep the repressed state of
the gene, the reactions are

DNA + Picenter � DNArep.

Here the forward reaction rate is .01μm3s−1 and the reverse rate is .01 s−1.
Finally, mRNA is assumed to be degradable within the cytoplasm with rate .2 s−1,

and protein anywhere with rate .0025 s−1. Table 4.1 gives the diffusion and nuclear
membrane permeability rates for the different species in the model. Note that because
of the finite diffusion coefficients, this model will give different statistics than the
corresponding well-mixed model. For example, in the nuclear export model the time
for an mRNA-nuclear export receptor complex to diffuse throughout the nucleus is
approximately

r2
nuc

D
= 250 s.
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Table 4.1

Diffusion constant, D, and nuclear membrane permeability, ρ, for each species.

Species D μm2 s−1 ρ μm s−1

mRNA .1 0

mRNAl 0 0
mRNA–NR–Rt .1 .17
mRNA–NR–Rt–Rb .1 0
P 20.0 0
P–NR 20.0 1.87

In contrast, the time scale for that complex to leave the nucleus in the well-mixed
model would be approximately

4
3πr

3
nuc

4πr2
nuc ρ

= 9.8 s.

With the assumed biological constants the two step export process, finding the nuclear
membrane and then passing through it, is strongly diffusion limited. Therefore, a
well-mixed model with infinitely fast diffusion would ignore the long time scale for
an export complex to find the nuclear membrane, much less to get through it. This
would result in a substantially faster export process than biologically occurs.

4.3. Numerical results. Figures 6 and 7 show the time evolution of one real-
ization of the model described in the previous section, using an underlying 37 by 37
Cartesian mesh with a mesh width of approximately .72 microns. Within the simula-
tions we calculate the number of molecules of each chemical species within each mesh
cell. We assume that within each individual mesh cell particles are well mixed, and
as such the marker for every molecule in each figure is placed randomly within the
mesh cell containing that molecule. Initially there are no mRNAs or proteins within
the system, and the DNA is in the unbound state. Figure 6 shows the evolution of
the system over several minutes. By Figure 6(a) the first mRNA has been fully tran-
scribed and, because of the fast binding rate, is bound to a nuclear export receptor.
The DNA is unbound, waiting for the next transcription cycle to begin. After 160 sec-
onds, a second mRNA has been transcribed and bound with a nuclear receptor. The
DNA is again unbound. By 310 seconds several proteins have been translated. One
is diffusing within the cytoplasm bound to a nuclear receptor, while the other has
already undergone the nuclear import process and is diffusing freely within the nu-
cleus. Notice there is only one visible mRNA, as the second is undergoing translation
within the cytoplasm and hence not displayed. The DNA is also not visible as it is
undergoing transcription. Finally, after 380 seconds, several proteins have accumu-
lated within the nucleus, with one binding to and inhibiting the DNA. A free mRNA
is diffusing within the cytoplasm, along with a nuclear receptor coupled protein.

By allowing the protein to feed back and inhibit the transcription of its gene, we
create a system in which protein production occurs in bursts. Figure 7 shows that
a large amount of protein is built up in the nucleus by 1160 seconds, and that the
DNA is in the repressed state. The higher protein levels increase the probability of
the gene becoming repressed, and because the on rate for binding is sufficiently fast,
and the off rate sufficiently slow, by 1670 seconds the overall protein population has
shrunk from 10 to just 2. This is due in part to the fast decay rates of the mRNA. As
the DNA is repressed, no mRNAs are transcribed to replace those that quickly decay,
and hence the protein population simply decays away over time. Once the protein
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Fig. 6. Evolution of one realization of the model from section 4.2 over several minutes. A star
denotes the unbound DNA and a circle that the DNA is repressed. During transcriptional states
the DNA is not displayed. A diamond denotes mRNA, and “×’s” denote mRNA bound to nuclear
receptor and RanGTP. mRNAs coupled to nuclear receptors, RanGTP, and RanBP1 are not present
in the images shown. During translation mRNAs are not displayed. A plus denotes a protein, and
a box represents protein bound to nuclear receptor. Time is in seconds.

population becomes sufficiently low, as in Figure 7(b), it becomes more unlikely that
protein will find the DNA to bind and repress it, and hence the DNA is able to enter
the transcription cycle. By 2010 seconds at least one mRNA has been transcribed and
subsequently translated several times, as the nuclear protein level has increased. The
production of mRNA followed by its subsequent translation produces new proteins,
and consequently the nuclear protein population rises thereafter. By 2080 seconds,
10 protein molecules are within the nucleus.

Figure 8 shows the total number of nuclear proteins in one realization, over 30,000
seconds. The total number is given by the amount of free, receptor-bound, and DNA-
bound proteins within the nucleus at a fixed time. Note that the number of proteins
tends to quickly jump up to a given amount, and then more slowly decay to either
one or zero proteins. When only one protein is present for large periods of time, it is
usually bound to the DNA, thereby repressing the gene (data not shown).
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Fig. 7. Evolution of one realization of the model from section 4.2 over a half hour. Symbols
have the same codes as in Figure 6.

5. Conclusions and future work. We have presented a method for calculating
diffusive jump rates for the reaction-diffusion master equation within complex geome-
tries. The method allows for multiple domains, and easily handles both jump and
Neumann boundary conditions. The underlying discretization on which the method
is based is found to converge between first and second order accuracy on both the
Poisson equation and the diffusion equation. The discretization also conserves proba-
bility, and gives jump rates that satisfy the principle of detailed balance for diffusive
motion and for passive boundary fluxes. With only one particle and no chemical
reactions the method converges, as the mesh width goes to zero, to the solution to
the Fokker–Planck equation for a classical Brownian particle. Further, when the sys-
tem contains only first order reactions, the mean concentrations given by the method
converge to the solution of the reaction-diffusion equations associated with the de-
terministic model of the chemical system. If the system contains bimolecular or
higher order reactions, however, no such agreement with the solution of deterministic
reaction-diffusion equations would be expected (except in the limit of large numbers
of molecules), since averaging does not commute with multiplication. In such cases,
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Fig. 8. Total number of nuclear proteins in one realization of the model from section 4.2.
Simulation occurred over 30,000 seconds, with data points at one second intervals.

our method should give a more accurate representation of the stochastic dynamics of
the spatially distributed chemical system.

As an illustrative application, we developed a model for eukaryotic transcription,
nuclear export, translation, nuclear import, and gene regulation, and we simulated
this model in a simplified two-dimensional representation of a eukaryotic cell. Spon-
taneous, but noisy, oscillations in nuclear protein levels were observed in this simple
genetic network.

For future work, we plan to extend the current software implementation of the
method to three dimensions, with the eventual goal of simulating cellular networks
with realistic nuclear membrane and plasma membrane geometry. One interesting
question is the interplay between reaction rates and diffusion rates in producing os-
cillatory nuclear protein levels. For different parameter regimes well-mixed stochas-
tic, well-mixed deterministic, deterministic reaction-diffusion, and stochastic reaction-
diffusion models could all show different qualitative behavior. We are also working on
developing a more accurate biochemical model for the transcription and translation
processes within eukaryotic cells.
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