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Abstract

Stochastic reaction-diffusion models have become an important tool in studying how both noise in
the chemical reaction process and the spatial movement of molecules influences the behavior of biological
systems. There are two primary spatially-continuous models that have been used in recent studies; the
diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both
models treat molecules as points undergoing Brownian motion. The former represents chemical reactions
between two reactants through the use of reactive boundary conditions, with two molecules reacting
instantly upon reaching a fixed separation (called the reaction-radius). The Doi model uses reaction
potentials, whereby two molecules react with a fixed probability per unit time, λ, when separated by less
than the reaction radius. In this work we study the rigorous relationship between the two models. For
the special case of a protein diffusing to a fixed DNA binding site, we prove that the solution to the Doi

model converges to the solution of the Smoluchowski model as λ → ∞, with a rigorous O(λ−
1
2
+ε) error

bound (for any fixed ε > 0). We investigate by numerical simulation, for biologically relevant parameter
values, the difference between the solutions and associated reaction time statistics of the two models. As
the reaction-radius is decreased, for sufficiently large but fixed values of λ, these differences are found to
increase like the inverse of the binding radius.

1 Introduction

Stochastic reaction-diffusion models have become a popular tool for modeling biological systems in which
both noise in the chemical reaction process and the spatial diffusion of molecules play an important roll. Such
models have been used in a multitude of recent studies, examining the dynamics of synaptic transmission [33];
the MinCDE system in bacteria [10]; how proteins search for DNA binding sites [26]; and studies of signaling
in the cell membrane [9]. There are three primary stochastic reaction-diffusion models that these studies
have made use of; the diffusion limited reaction model of Smoluchowski [35, 28], what we call the Doi
model [38, 5, 6], and the reaction diffusion master equation (RDME) [16, 12, 27].

In the Doi and Smoluchowski models, the positions of molecules are represented as points undergoing Brown-
ian motion. Bimolecular reactions between two molecules in the Doi model occur with a fixed probability per
unit time when two reactants are separated by less than some specified “reaction radius”. The Smoluchowski
model differs by representing bimolecular reactions in one of two ways; either occurring instantaneously, or
with fixed probability per unit time, when two reactants’ separation is exactly the reaction-radius [35, 28]. In
this work we focus on the former case (often called a pure absorption reaction). For both models unimolec-
ular reactions represent internal processes. They are assumed to occur with exponentially distributed times
based on a specified reaction-rate constant. For general chemical systems, both the Doi and Smoluchowski
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models can be described by, possibly infinite, systems of partial integral differential equations (PIDEs) for
the probability densities of having a given number of each chemical species and the corresponding locations
of each molecule.

The RDME is spatially discrete, and given by a, possibly infinite, system of ODEs for the numbers of each
chemical species located at each lattice site. It can be interpreted as an extension of the non-spatial chemical
master equation (CME) [16, 32, 15, 39] model for stochastic chemical kinetics. Formally, the RDME has been
shown to be an approximation to both the Doi model [22] and the Smoluchowski model [23, 25, 13, 20] for
appropriately chosen lattice spacings. These approximations break down for systems involving bimolecular
reactions, in two or more dimensions, in the limit that the lattice spacing approaches zero [23, 20]. (Recently
we have suggested a new convergent RDME (CRDME) that converges to the Doi model as the lattice spacing
is taken to zero [24].)

There are a plethora of numerical methods and simulation packages that have been developed to study biolog-
ical systems based on one of the Smoluchowski, Doi, or RDME models. These include the λ-ρ method [11, 31],
the CRDME [24], the FPKMC [7, 36], MCELL [29], MesoRD [14], Smoldyn [1], STEPS [21], and URDME [8].
While these numerical methods and software packages have been used in many modeling efforts, it is still
an open question how exactly the underlying mathematical models they approximate are rigorously related.
Moreover, to compare the results of modeling studies it would be helpful to understand how to choose pa-
rameters in the Doi (resp. Smoluchowski) model to accurately approximate the Smoluchowski (resp. Doi)
model.

To address these questions, we investigate the rigorous relationship between the Doi and (pure absorption)
Smoluchowski models. We begin in the next section by considering the special case of a single protein
searching for a DNA binding site within the nucleus of a eukaryotic cell. The binding site is located at the
origin, and the nucleus is modeled as a concentric sphere of radius R. With the further assumption that
the initial distribution of the protein’s position is rotationally invariant, the Doi and Smoluchowski models
can be simplified to spherically-symmetric diffusion equations. For the Doi model the diffusing protein is
allowed to bind with probability per unit time λ when within a reaction-radius, rb, of the binding site. This
leads to a “reaction potential” in the PDE for the Doi model. In the Smoluchowski model the protein reacts
instantly upon reaching a separation rb from the binding site. This leads to the replacement of the reaction
potential with a zero Dirichlet boundary condition on the sphere of radius rb around the origin.

Denote by pλ(r, t) the spherically symmetric probability density that the diffusing molecule is r from the
origin at time t in the Doi model, and by ρ(r, t) the corresponding probability density in the Smoluchowski
model. In Section 3 we numerically calculate the difference between pλ(r, t) and ρ(r, t) for biologically
relevant parameter values. We find that pλ(r, t)→ ρ(r, t) uniformly in r and t as λ→∞, with an empirical

convergence rate that is O(λ−
1
2 ). The same empirical convergence rate is observed for the corresponding

binding time distributions and mean binding times of the two models. For sufficiently large, but fixed, values
of λ, as rb is decreased the difference between the probability densities, binding time distributions, and mean
binding times increase like r−1b .

These results motivate our studies in Section 4, where we rigorously prove the convergence of pλ(r, t) to

ρ(r, t) as λ → ∞ with an O(λ−
1
2+ε) error bound (for all ε > 0). Let µn denote the nth eigenvalue of the

generator of the Doi model (see (8)), with αn the nth eigenvalue of the generator of the Smoluchowski model
(see (6)). Our approach is to first prove that for λ sufficiently large, if αn ≤ M(λ) with M(λ) a specified
increasing function of λ, then

|αn − µn| ≤
C

λ
1
2−ε

for any fixed ε > 0. The precise statement of this result is given in Theorem 4.1. This theorem is then
used to show the corresponding eigenfunction convergence result in Lemma 4.1. Denote by ψn(r) the nth
eigenfunction of the generator of the Doi model (8), and φn(r) the corresponding eigenfunction of the
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Smoluchowski model (6). We prove for λ sufficiently large and µn < M(λ) that

sup
r∈[rb,R]

|φn(r)− ψn(r)| ≤ C

λ
1
2−ε

.

Finally, the preceding two results are used to prove that

sup
t∈(δ,∞)

sup
r∈(rb,R)

|pλ(r, t)− ρ(r, t)| ≤ C

λ
1
2−ε

, (1)

for any ε > 0 and δ > 0 fixed. The precise statement of this result is given in Theorem 4.2.

It should be noted that the approximation of Dirichlet boundary conditions by reaction potentials is a well-
studied problem in the context of the large-coupling limit in quantum physics [19]. Our approach of proving
convergence through successive eigenvalue, eigenfunction, and PDE solution estimates differs from the more
standard resolvent and path integral estimates [37, 3, 2]. A similar convergence rate of the Doi model solution
to the Smoluchowski model solution was proven in L2(R3) in [4] (as opposed to the uniform convergence
rate (1) we prove in a spherical domain). Denote by 1[0,rb](r) the indicator function of the interval, [0, rb].

Convergence rates for eigenvalues of the general one-dimensional operator − d2

dx2 +V (x) +λW (x) as λ→∞,
for x ∈ R, were proven in [17]. In contrast, in Section 4 we study the spherically symmetric operator

arising in the Doi model, − d2

dr2 − 2
r
d
dr + λ1[0,rb](r) for r ∈ [0, R) with a Neumann boundary condition at R,

directly.

2 Diffusion of a Protein to a Fixed DNA Binding Site

To study the rigorous relationship between the Doi and Smoluchowski models we investigate the special case
of the chemical reaction A + B→ ∅, with only one molecule of species A and one molecule of species B. We
further assume the molecule of species B is located at the origin and stationary (DB = 0). The molecule
of species A is assumed to move within a sphere of radius R centered on the B molecule. We denote the
diffusion constant of the A molecule by D and the reaction radius by rb. While idealized, this special case
can be interpreted as a model for the diffusion of a DNA binding protein to a fixed DNA binding site (located
at the center of a nucleus).

We now formulate the Doi and Smoluchowski models in this special case, with the additional assumption
of spherical symmetry. This assumption will hold whenever the initial distribution of the A molecule is
spherically-symmetric about the origin. Denote by ρ(r, t) the spherically-symmetric probability density that
the A molecule is a distance r from the origin and has not reacted with the B molecule at time t. Then the
Smoluchowski model reduces to

∂ρ

∂t
= D∆rρ, rb < r < R, t > 0, (2)

where ∆r denotes the spherically symmetric Laplacian in three-dimensions,

∆r ≡
1

r2
∂

∂r

(
r2
∂

∂r

)
.

This equation is coupled with the reactive Dirichlet boundary condition, and zero Neumann boundary
condition (so that the molecule remains in the “nucleus”)

ρ(rb, t) = 0,
∂ρ

∂r
(R, t) = 0, t > 0.
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Finally, we use a delta-function initial condition, ρ(r, 0) = δ(r−r0)/r2, where r0 ∈ (rb, R) denotes the initial

position of the diffusing molecule. With this initial condition ρ(r, 0) has the normalization
∫ R
rb
ρ(r, 0)r2 dr =

1.

Let pλ(r, t) label the corresponding spherically-symmetric probability density for the Doi model. In the
special case we are considering, the PIDEs for the Doi model reduce to

∂pλ
∂t

= D∆rpλ − λ1[0,rb](r) pλ(r, t), 0 ≤ r < R, t > 0, (3)

with the Neumann boundary condition,

∂pλ
∂r

(R, t) = 0, t > 0,

and the same initial condition as the Smoluchowski model, pλ(r, 0) = δ(r − r0)/r2. Note, probability is not
conserved in either (2) or (3) due to the absorbing boundary condition in (2) and sink term in (3). If one
desired a model that conserved probablity, a second equation could be added to each model to keep track of
the probability of being in the “reaction has occurred” state.

For simplicity, in what follows, we assume D = 1. Equations (2) and (3) can be solved explicitly by
separating variables. In solving (3) we impose continuity of the function and its derivative across the surface
of discontinuity as justified by the results of [18] and [34]. The computations are standard so we give only
the final results. We can write the solutions as the eigenfunction expansions

ρ(r, t) =

∞∑
n=1

anφn(r0)φn(r)e−αnt (4)

and

pλ(r, t) =

∞∑
n=1

bnψn(r0)ψn(r)e−µn(λ)t. (5)

Here φn(r) are the eigenfunctions of the Smoluchowski model and satisfy the equation

−∆rφn(r) = αnφn(r), rb < r < R, (6)

with the boundary conditions φn(rb) = 0 and ∂φn
∂r (R) = 0. We extend these functions to [0, R] by defining

φn(r) = 0 for r ∈ [0, rb]. αn denotes the eigenvalue of the Smoluchowski model corresponding to φn(r), and
satisfies the equation f(αn) = 0, where

f(µ) =
R
√
µ− tan(

√
µ(R− rb))

Rµ tan(
√
µ(R− rb)) +

√
µ
. (7)

Solving (6) we find that

φn(r) =
1

r

[
sin(
√
αn(R− r))
R
√
αn

− cos(
√
αn(R− r))

]
, rb < r < R.

ψn(r) denote the eigenfunctions of the Doi model (3), satisfing the equation

−∆rψn(r) + λ1[0,rb]ψn(r) = µnψn(r), 0 ≤ r < R, (8)

with the Neumann boundary condition ∂ψn
∂r (R) = 0. Here µn labels the eigenvalue of the Doi model

corresponding to ψn(r), solving the equation f(µn) = A(µn, λ) with

A(µ, λ) =


√

1

λ− µ tanh
(√

λ− µrb
)
, µ < λ,√

1

µ− λ tan
(√

µ− λrb
)
, µ > λ.

(9)
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We will sometimes use the notation µn(λ) to make explicit the dependence of the eigenvalues on λ. Solving (8)
we find that

ψn(r) =

{
ψinn (r), 0 < r < rb,

ψoutn (r), rb ≤ r < R,

where

ψinn (r) =


1

R
√
µn

sin(
√
µn(R− rb))− cos(

√
µn(R− rb))

sinh(rb
√
λ− µn)

(
sinh(r

√
λ− µn)

r

)
, µn < λ,

1
R
√
µn

sin(
√
µn(R− rb))− cos(

√
µn(R− rb))

sin(rb
√
µn − λ)

(
sin(r

√
µn − λ)

r

)
, µn > λ,

(10)

and

ψoutn (r) =
1

r

[
sin(
√
µn(R− r))
R
√
µn

− cos(
√
µn(R− r))

]
. (11)

Finally, let (u(r), v(r)) =
∫ R
0
u(r)v(r)r2 dr denote the usual L2 inner product. The normalization constants

an and bn are then given by

an =
1

(φn(r), φn(r))
, bn =

1

(ψn(r), ψn(r))
.

3 Difference Between Smoluchowski and Doi Models for Biologi-
cally Relevant Parameters

If we interpret (2) and (3) as models for the diffusion of a protein that has just entered the nucleus (r0 = R)
to a DNA binding site, then typically rb would be between .1 and 10 nm [30, 9, 1], R between 1 and 10µm,
and D between 1 and 20µm2s−1. In the following we assume that all spatial units are in micrometers and
time is in seconds, with R = r0 = 1µm, D = 10µm2s−1, and λ having units of s−1. We also assume that
pλ(r, 0) = ρ(r, 0) = δ(r − r0)/4πr2. pλ and ρ are then the same as in the previous section, but rescaled by
(4π)−1.

We numerically evaluated pλ(r, t) and ρ(r, t) in MATLAB using the eigenfunction expansions (5) and (4).
The series were truncated at the first term with magnitude smaller than 10−10. In evaluating these series
numerically it is necessary to calculate a number of the eigenvalues µn and αn. For each term of the eigenfunc-
tion expansions the transcendental equations for the corresponding Doi eigenvalue, f(µn) = A(µn, λ), and
the Smoluchowski eigenvalue, f(αn) = 0, were solved to 25 digits of precision using the Mathematica Reduce

function. In Figure 1a we show the solution to the Smoluchowski model (2), ρ(r, t), when rb = 10−3µm.
For short times the solution is localized near R, while a boundary layer develops near r = rb as t increases.
Figure 1b shows the maximum absolute difference between pλ and ρ for a discrete set of points,

‖pλ(r, t)− ρ(r, t)‖∞ ≡ max
i

max
j
|pλ(ri, tj)− ρ(ri, tj)| ,

where ri and tj are given in Appendix C by Listings 1 and 2. For each fixed value of rb we see that as λ→∞
the difference between pλ and ρ converges to zero like λ−1/2. As rb is decreased, the absolute difference
increases by approximately an order of magnitude for each fixed value of λ (for λ sufficiently large).

For many biological models the statistics of the random variable for the time at which the diffusing molecule
first binds to the binding site are of interest. For example, in [26] we studied how this time was influenced
by volume exclusion due to the spatially varying density of chromatin inside the nucleus of mammalian cells.
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Figure 1: (a) Solution to the Smoluchowski model (2) for rb = 10−3µm. Note that the t-axis uses a
logarithmic scale. (b) Absolute difference in pλ(r, t) and ρ(r, t) as λ and rb are varied.

We subsequently denote these random variables by TDoi and TSmol. Statistics of these random variables can
be calculated from the cumulative distribution functions

Prob [TDoi < t] = 1− 4π

∫ R

0

pλ(r, t)r2 dr,

and

Prob [TSmol < t] = 1− 4π

∫ R

rb

ρ(r, t)r2 dr.

We evaluated Prob [TDoi < t] and Prob [TSmol < t] by analytically integrating the eigenfunction expansions (5)
and (4), see Appendix A, and evaluating the truncated series in MATLAB. (Using the same method as
described above for evaluating pλ(r, t) and ρ(r, t).)

Figure 2a shows Prob [TSmol < t] for varying rb and demonstrates a constant increase in the binding time as
rb is decreased (on a logarithmic scale). Figure 2b shows the absolute difference in binding time distribu-
tions,

‖Prob [TDoi < t]− Prob [TSmol < t] ‖∞ ≡ max
tj
|Prob [TDoi < tj ]− Prob [TSmol < tj ]| ,

where tj is given by Listing 2 in Appendix C. We again observe an empirical λ−
1
2 convergence rate of

Prob [TDoi < t] to Prob [TSmol < t] as λ → ∞. For a biologically relevant binding radius of 10−3µm, when
λ = 1011s−1 the absolute difference between the two distributions is on the order of 10−3.

In addition to the probability densities and binding time distributions, we also examined the mean time for
the diffusing protein to find the binding site (when starting a distance r0 from the origin). The mean binding
time for the Doi model can be found in a simple closed form by solving the corresponding mean first passage
time problem (24), see Appendix B, and is given by

E [TDoi] (r0) =

∫ ∞
0

Prob [TDoi < t] dt =

{
u−(r0), r0 < rb,

u+(r0), r0 > rb.
(12)
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Figure 2: (a) Smoluchowski binding time distributions for varying rb. Note the t-axis is logarithmic. (b)
Absolute difference in binding time distributions from the Smoluchowski and Doi models as λ is varied.

Here, for λ̂ = λ/D, we have that

u−(r0) =
1

Dλ̂
+

(
sinh(

√
λ̂r0)

r0

) R3 − r3b
3D
(
rb
√
λ̂ cosh(

√
λ̂rb)− sinh(

√
λ̂rb)

)
 ,

u+(r0) =
r2b − r20

6D
+
R3

3D

[
1

rb
− 1

r0

]
+

1

Dλ̂
+

(
sinh(

√
λ̂rb)

rb

) R3 − r3b
3D
(
rb
√
λ̂ cosh(

√
λ̂rb)− sinh(

√
λ̂rb)

)
 .

Similarly, the mean binding time in the Smoluchowski model can be found by solving the mean first passage
time problem (25), and is given by

E [TSmol] (r0) =
r2b − r20

6D
+
R3

3D

[
1

rb
− 1

r0

]
, r0 > rb. (13)

Figure 3a shows the mean binding time in the Doi model as λ is varied for r0 = R.

The difference between the two mean binding times, for r0 > rb, is then given by

|E [TDoi] (r0)− E [TSmol] (r0)| =

∣∣∣∣∣∣ 1

Dλ̂
+

(
sinh(

√
λ̂rb)

rb

) R3 − r3b
3D
(
rb
√
λ̂ cosh(

√
λ̂rb)− sinh(

√
λ̂rb)

)
∣∣∣∣∣∣ . (14)

This difference is O(λ−
1
2 ), consistent with the results we prove in the next section on the uniform convergence

of pλ to ρ as λ → ∞. (14) also demonstrates that for large, but fixed values of λ the absolute difference in
mean binding times for biologically relevant parameter choices will increase like r−1b as rb is decreased. In
Figure 3b the relative difference,

|E [TSmol]− E [TDoi]|
E [TSmol]

, (15)

is graphed as λ is varied for r0 = R, illustrating the λ−1/2 convergence of E [TDoi] to E [TSmol]. For rb =
10−3µm the mean binding times differ by less than 1% when λ = 1011 s−1.
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Figure 3: (a) Mean binding time of Doi model vs λ. (b) Relative difference in mean binding times (15).

Each of Figures 1b, 2b, and 3b illustrate a λ−1/2 empirical convergence rate, consistent with the bound (1)
we prove in the next section (Theorem 4.2). Moreover, they demonstrate that as rb is decreased larger values
of λ are required to ensure the absolute difference between the two models remains below a fixed tolerance.
In all three cases, once λ is sufficiently large that the λ−1/2 convergence rate can be observed, for biologically
relevant parameter values the absolute difference appears to scale like r−1b as rb is decreased.

4 Rigorous Convergence Results

In this section we study the rigorous relationship between the Doi model (3) and Smoluchowski model (2).
In Subsection 4.1 we derive a rigorous error bound on the rate of convergence of the Doi eigenvalues,
µn(λ), to the Smoluchowski eigenvalues, αn, as λ → ∞. In Subsection 4.2 we obtain similar estimates
for the convergence of the Doi eigenfunctions, ψoutn , to the Smoluchowski eigenfunctions, φn. We obtain
our main result in subsection 4.3 where we use these eigenvalue and eigenfunction estimates to show the
uniform convergence in space and time of the solution to the Doi model (3), pλ(r, t), to the solution of the
Smoluchowski model (2), ρ(r, t), as λ→∞. (With the error bound (1).)

4.1 Eigenvalue Estimates

In this subsection we derive estimates for the difference between the Doi, µn(λ), and Smoluchowski, αn,
eigenvalues. We start by proving some properties of the functions A(µ, λ) and f(µ) that we will find
useful:
Proposition 4.1. A(µ, λ) is monotone increasing in µ. Furthermore for 0 < µ < λ, A is positive.

Proof. Positivity is trivial since tanh is positive. Note also that A(0, λ) = tanh(
√
λrb)/

√
λ. A simple

computation shows that for µ < λ

d

dµ
A(µ, λ) =

tanh
(√
λ− µrb

)
− rb
√
λ− µ

(
sech2

(√
λ− µrb

))
2 (λ− µ)

3/2
=

sinh
(
2
√
λ− µrb

)
− 2rb

√
λ− µ

4 cosh2
(√
λ− µrb

)
(λ− µ)

3/2
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and for µ > λ

d

dµ
A(µ, λ) =

rb
√
µ− λ

(
sec2

(√
µ− λrb

))
− tan

(√
µ− λrb

)
2 (λ− µ)

3/2
=

2rb
√
µ− λ− sin

(
2
√
µ− λrb

)
4 cos2

(√
µ− λrb

)
(µ− λ)

3/2
.

The result follows since for u ≥ 0, sinh(u) ≥ u and sin(u) ≤ u.

Let the vertical asymptotes of f(µ) be denoted by βn. They satisfy the equation

Rβn tan(
√
βn(R− rb)) +

√
βn = 0; βn > 0.

Recalling that αn denote the eigenvalues of the Smoluchowski model, satisfying f(αn) = 0, then
Proposition 4.2. We have the following

1. 0 < α1 < β1 < α2 < . . . < βn < αn+1 < . . .

2. f ′(µ) < 0 and f(µ) > 0 on [0, α1) and (βn, αn+1) for n ≥ 1.

Proof. 1. Let κ = 1− rb/R and x = R
√
µ. We make the change of variable in f(µ) and obtain

f(µ) ≡ f̃(x) =
R (x− tan(κx))

x2 tan(κx) + x
=
R
(

1− tan(κx)
x

)
x tan(κx) + 1

≡ N(x)

D(x)
.

Let dn be such that N(dn) = 0 and ηn be such that D(ηn) = 0. In terms of the old variables, we have
dn = R

√
αn and ηn = R

√
βn. N(x) = 0 implies that tan(κx) = x and D(x) = 0 imply that tan(κx) = − 1

x .
Note that the functions tan(κx), x and − 1

x are all monotone increasing. Finally if we let θn = π
2κ (2n − 1)

be the vertical asymptotes of tan(κx) one easily checks that we have

0 < d1 < θ1 < η1 < . . . < dn < θn < ηn . . .

This proves 1.

2. N > 0 on
⋃
n≥1

(θn, dn+1) ∪ (0, d1), and N < 0 on
⋃
n≥1

(dn, θn). Similarly, D > 0 on
⋃
n≥1

(ηn, θn+1) ∪ (0, θ1)

and D < 0 on
⋃
n≥1

(θn, ηn). Thus it follows that f̃(x) > 0 if and only if x ∈
⋃
n≥1

(ηn, dn+1) ∪ (0, d1). Next, we

show that f ′ < 0. Note

N ′(x) =
R
(
tan(κx)− κx sec2(κx)

)
x2

=
R (sin(2κx)− 2κx)

2x2 cos2(κx)
,

and

D′(x) = tan(κx) + κx sec2(κx) =
sin(2κx) + 2κx

2 cos2(κx)
.

Since |sin(θ)| ≤ |θ| it follows that N ′(x) ≤ 0 and that D′(x) ≥ 0, with equality in both only when x = 0.
From what we have shown above, f̃(x) > 0 if and only if both N(x) > 0 and D(x) > 0 so that

f ′(µ) = f̃ ′(x) · dx
dµ

=

[
D(x)N ′(x)−N(x)D′(x)

D(x)
2

]
· dx
dµ

< 0.
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Proposition 4.3. The Doi eigenvalues µn(λ) satisfy for n such that µn(λ) ≤ λ

0 < µ1(λ) < α1 < β1 < µ2(λ) < α2 < . . . < βn−1 < µn(λ) < αn.

Proof. Proposition 4.2 implies that f(µ) is positive and decreases monotonically from infinity to zero on
(βn, αn+1). Since A(µ, λ) is positive and increasing in µ for µ ≤ λ, we find f(µ) = A(µ, λ) once on each
interval (βn, αn+1). The proof of Proposition 4.2 also shows that f ≤ 0 on (αn, βn), and hence there are no

other possible roots for α1 < µ ≤ λ. As f(0) = rb and A(0, λ) = λ−
1
2 tanh(

√
λrb) < rb, a similar argument

implies 0 < µ1 < α1.

We will also have need for the following

Proposition 4.4. Let {γn} denote the eigenvalues for the (positive) radially symmetric Laplacian on [0, R),
with zero Neumann boundary conditions on the ball of radius R. Let αn and µn be as above. Then the
following hold:

1. The µn(λ) are continuous and monotone increasing in λ for all n ≥ 1

2. For all n ≥ 1 and any fixed λ, we have that

µn(0) = γn =

(
(n− 1)π

R

)2

≤ µn(λ)

Remark 4.1. The proof is a straightforward application of the variational minimax principle of Poincare. We
do not show it here.

Proposition 4.5. For any L ∈ R+, define the index set A(L) = {n|αn ≤ L}. If we let |A(L)| ≡ card(A(L))
then given δ > 0 there exists constants C∗1 (δ) and C∗2 (δ) such that for L ≥ δ

C∗1 (δ)
√
L ≤ |A(L)| ≤ C∗2 (δ)

√
L (16)

Proof. Write L̃ = R
√
L and again define κ = 1 − rb/R. Then |A(L)| is just the number of solutions to

tan(κx) = x which lie in the interval [0, L̃]. This number is well approximated by the number of vertical
asymptotes of tan(κx). It then follows that

κL̃

π
− 1 ≤ |A(L)| ≤ κL̃

π
+ 1

so that √
L

(
R− rb
π

− 1√
L

)
≤ |A(L)| ≤

√
L

(
R− rb
π

+
1√
L

)
.

If L ≥ δ the choice C∗1 (δ) =
R− rb
π

− 1√
δ

and C∗2 (δ) =
R− rb
π

+
1√
δ

gives the proposition.

Remark 4.2. In the remainder we assume δ = 4π2/(R− rb)2 so that C∗1 = (R− rb)/2π.

We now give our main convergence estimate for the eigenvalues of the Doi model. The following theorem
can be regarded as the heart of the subsequent computations.
Theorem 4.1. Let 0 < σ0 <

1
4 and define M(λ) ≡ K0λ

σ for K0 > 1. For any fixed σ ∈ (0, σ0] there exists

λ0 > 0 such that for λ ≥ λ0, M(λ)
λ ≤ 1

2 . Then for αn ≤M(λ), µn(λ)→ αn, O(λ−(
1
2−2σ)).

Remark 4.3. Note that in the remainder C will denote an arbitrary constant that may depend on R, rb, and
λ0. We will also subsequently assume λ0 > 1.
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Proof. Recall that the Doi eigenvalues µn(λ) satisfy

f(µn(λ)) = A(µn(λ), λ).

As before let κ = 1−rb/R and let x = R
√
µ. Recalling the definitions of D(x) and N(x) from Proposition 4.2,

define

B(x;λ) = D(x)Ã(x, λ) ≡
[x tan(κx) + 1] tanh

(
rb

√
1− x2

λR2

)
√
λ
√

1− x2

λR2

.

It follows that the rescaled Doi eigenvalues xn(λ) satisfy

N(xn(λ)) = B(xn(λ);λ).

For K0 > 1 we choose λ ≥ (2K0)
1

1−σ0 so that M(λ)
λ ≤ 1

2 . Recall f(µ) ≡ f̃(x). We restrict to {x : x2

R2 ≤
M(λ), f̃(x) ≥ 0}, and let h(u) = (1− u)−1/2. Since h is monotone it follows that

1
√
λ
√

1− x2

λR2

≡ h( x2

R2λ )√
λ
≤ h( 1

2 )√
λ

=

√
2√
λ
.

As shown in Proposition 4.2, f̃(x) ≥ 0 implies − 1
x ≤ tan(κx) ≤ x so that

|B(x;λ)| ≤ [1 + x tan(κx)]
√

2√
λ

≤
[
1 + x2

]√
2√

λ
.

Write xn(λ) = dn − εn. (Recall dn = R
√
αn.) Then

N(dn − εn) = B(xn(λ);λ).

Applying the mean value theorem we get, for some en ∈ (xn(λ), dn), that

N(dn)−N ′(en)εn = B(xn(λ);λ).

As N(dn) = 0 and N ′(en) < 0,

|N ′(en)| εn ≤
[
1 + x2n

]√
2√

λ

which gives that

εn ≤
√

2
[
1 + x2n

] (
2e2n cos2(κen)

)
R
√
λ (2κen − sin(2κen))

≤
√

2
[
1 + d2n

]
en

κR
√
λ
(

1− sin(2κen)
2κen

) ≤ C
[
1 + d2n

]
dn

√
λ
(

1− sin(2κen)
2κen

) (17)

For any fixed c ∈ (0, κ x1(λ0)), monotonicity of the eigenvalues implies 0 < c
2κ ≤ x1(λ0) ≤ xn(λ) < en < dn,

and therefore c < 2κen. Define l(θ) = 1− sin(θ)

θ
. It follows easily that for θ ≥ c there exists 0 < m < 1 such

that
m ≤ l(θ) ≤ 1

Using this bound in (17), in the original unscaled variables we find that

R(
√
αn −

√
µn) ≤ CR

√
αn
[
1 +R2αn

]
√
λ

(18)
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which implies

αn − µn ≤
2Cαn

[
1 +R2αn

]
√
λ

.

For αn ≤M(λ) ≡ K0λ
σ, M(λ) > 1 implies

αn − µn ≤
C(M(λ))2√

λ
≡ CK2

0

λ
1
2−2σ

.

Remark 4.4. Of interest is the possibility of tighter estimates here. In fact, one can show that if f ′′(µ) > 0
wherever f(µ) > 0 we actually have

αn − µn ≤
Cαn

λ
1
2

.

Theorem 4.1 and Proposition 4.4 immediately implies
Corollary 4.1. For any fixed n, we have that µn(λ) converges monotonically to αn as λ→∞.

4.2 Eigenfunction Estimates

In this subsection we carry over the estimates for the eigenvalues obtained in the last subsection to obtain the
uniform convergence in r of the eigenfunctions as λ→∞. Though unstated, in the remainder all theorems
and lemmas include the assumptions of Theorem 4.1.
Lemma 4.1. The (unnormalized) Doi and Smoluchowski eigenfunctions satisfy

sup
r∈[rb,R]

∣∣φn(r)− ψoutn (r)
∣∣ = O

(
λ−(

1
2−

3σ
2 )
)

for µn < M(λ) = K0λ
σ as λ→∞.

Proof.

∣∣φn(r)− ψoutn (r)
∣∣ ≤ 1

r

∣∣∣∣ sin(
√
αn(R− r))
R
√
αn

− sin(
√
µn(R− r))
R
√
µn

∣∣∣∣+
1

r

∣∣∣∣ cos(
√
µn(R− r))− cos(

√
αn(R− r))

∣∣∣∣
:= I + II

Note that

I ≤ 1

rb

∣∣∣∣ sin(
√
αn(R− r))
R
√
αn

− sin(
√
µn(R− r))
R
√
αn

∣∣∣∣+
1

rb

∣∣∣∣ sin(
√
µn(R− r))
R
√
αn

− sin(
√
µn(R− r))
R
√
µn

∣∣∣∣
:= Ia + Ib.

We find

Ia ≤
1

Rrb
√
αn

∣∣∣∣2 sin

(
(R− r)

√
αn −√µn

2

)
cos

(
(R− r)

√
αn +

√
µn

2

)∣∣∣∣ ≤ (R− rb)
(√
αn −√µn

)
Rrb
√
αn

.

Similarly we have

Ib ≤
∣∣sin(
√
µn(R− r))

∣∣
Rrb

[
1√
µn
− 1√

αn

]
≤ (R− rb)

Rrb

[√
αn −√µn√

αn

]
.
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Combining these with (18)

I ≤ C
[
1 +R2αn

]
√
λ

≤ CM(λ)√
λ

=
CK0

λ
1
2−σ

.

For II we have

II ≤ 1

rb

[
2 sin

(
(R− r)

√
αn −√µn

2

)
sin

(
(R− r)

√
αn +

√
µn

2

)]
≤ R− rb

rb
(
√
αn −

√
µn)

≤ C(R− rb)
√
αn
[
1 +R2αn

]
rb
√
λ

≤ C (M(λ))
3
2

√
λ

=
CK

3
2
0

λ
1
2−

3σ
2

.

It follows that ∣∣φn(r)− ψoutn (r)
∣∣ ≤ CK0

λ
1
2−

3σ
2

[
1

λσ/2
+
√
K0

]
≤ C1(rb, R,K0)

λ
1
2−

3σ
2

(19)

This concludes the proof.

We now prove several uniform properties of the eigenfunctions we will use in the next subsection.
Lemma 4.2. 1. There exist a λ0, C2 = C2(rb, R), such that for all λ ≥ λ0 and n ∈ Z+

max

(
sup

r∈[rb,R]

∣∣ψoutn (r)
∣∣ , sup
r∈[rb,R]

|φn(r)|
)
≤ C2. (20)

2. Let bn = ‖ψn‖−22 and an = ‖φn‖−22 . Then there exists C3 such that for all λ ≥ λ0

max
(

sup
n
{an}, sup

n
{bn}

)
≤ C3. (21)

Proof. 1. We start by defining for z ≥ 0, and rb ≤ r ≤ R the auxiliary function

H(z, r) :=
1

r

[
sin(
√
z(R− r))
R
√
z

− cos(
√
z(R− r))

]
.

Note φn(r) ≡ H(αn, r) and ψoutn (r) ≡ H(µn, r). Now for z ≥ z0 > 0 we have that

|H(z, r)| = 1

r

∣∣∣∣[ sin(
√
z(R− r))
R
√
z

− cos(
√
z(R− r))

]∣∣∣∣
≤ 1

rb

[
1

R
√
z

+ 1

]
≤ 1

rb

[
1

R
√
z0

+ 1

]
=: C2(z0).

By Corollary 4.1 there exists λ0 such that for λ ≥ λ0

α1 ≥ µ1(λ) ≥ µ1(λ0) ≥ α1

2
> 0.

Note that we are using the fact that both the Doi and Smoluchowski eigenvalues can be written in non-
decreasing order. Choosing z0 = α1/2, proves the first part of the lemma.
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2. To prove the second part start by defining

h(z) :=

∫ R

rb

(H(z, r))
2
r2 dr.

Once again we have that ‖ψoutn ‖22 ≡ h(µn) and ‖φn‖22 ≡ h(αn). A priori we have that h(z) > 0 for all
z ≥ 0. An explicit computation shows that for z > 0, h(z) is continuous, lim

z→∞
h(z) = (R − rb)/2 > 0, and

lim
z→0

h(z) = (R3 − r3b)/3R2. With the positivity of h(z) on [0,∞), these results imply that A := inf h(z) > 0.

It then follows that

an =
1

‖φn‖22
≡ 1

h(αn)
≤ 1

A
=: C3

and

bn =
1

‖ψn‖22
≤ 1

‖ψoutn ‖22
≡ 1

h(µn)
≤ 1

A
=: C3.

This concludes the proof of the lemma.

These results imply that
Lemma 4.3. There exists C4 such that for n with µn(λ) ≤ αn ≤M(λ)

|bn − an| ≤
C4

λ
1
2−

3σ
2

.

Proof. We start by noting that

∣∣‖ψoutn ‖22 − ‖φn‖22
∣∣ =

∣∣∣∣∣
∫ R

rb

(
(ψoutn )2 − φ2n

)
r2 dr

∣∣∣∣∣
≤
∫ R

rb

∣∣ψoutn − φn
∣∣ ∣∣φn + ψoutn

∣∣ r2 dr
≤ C1(rb, R,K0)

λ
1
2−

3σ
2

[
sup

r∈[rb,R]

(∣∣ψoutn

∣∣+ |φn|
)] ∫ R

rb

r2 dr =
2C1C2(R3 − r3b)

3λ
1
2−

σ
2

.

To get the last line, we have used Lemmas 4.1 and 4.2. A direct computation shows that

∣∣‖ψoutn ‖22 − ‖ψn‖22
∣∣ = ‖ψinn ‖22 =

(
1

R
√
µn

sin(
√
µn(R− rb))− cos(

√
µn(R− rb))

sinh(rb
√
λ− µn)

)2 ∫ rb

0

sinh2(r
√
λ− µn) r2dr

≤ C
(
sinh(2rb

√
λ− µn)− 2rb

√
λ− µn

)
√
λ− µn sinh2(rb

√
λ− µn)

≤ C

λ
1
2

.

(Here we have used that
√
λ− µn ≥

√
λ−M(λ) ≥

√
λ
2 .) Using the preceding bounds we find, that

|bn − an| =
∣∣∣∣ 1

‖ψn‖22
− 1

‖φn‖22

∣∣∣∣ =

∣∣‖φn‖22 − ‖ψn‖22∣∣
‖φn‖22‖ψn‖22

≤
∣∣‖ψoutn ‖22 − ‖ψn‖22

∣∣
‖ψn‖22‖φn‖22

+

∣∣‖ψoutn ‖22 − ‖φn‖22
∣∣

‖ψn‖22‖φn‖22
≤ CC2

3

λ
1
2

+
2C1C2C

2
3 (R3 − r3b)

3λ
1
2−

3σ
2

=
1

λ
1
2−

3σ
2

[
CC2

3

λ
3σ
2

+
2

3
C1C2C

2
3 (R3 − r3b)

]
.

The choice C4 = CC2
3λ
− 3σ

2
0 + 2C1C2C

2
3 (R3 − r3b)/3 gives the lemma.
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4.3 An Error Estimate for the Convergence of the Doi to Smoluchowski Model

We now show the uniform convergence of the Green’s function of the radially symmetric Doi PDE (3) to the
Green’s function of the radially symmetric Smoluchowski PDE (2) model. The error bound we give shows
that the convergence of the Doi model to the Smoluchowski model can not be expected to be faster than
O(λ−1/2) as λ→∞.
Theorem 4.2. Fix any 0 < σ < 1

4 (see Theorem 4.1). For t ≥ δ > 0, there exists a function u(t) and λ0
such that for all λ ≥ λ0 we have:

sup
r∈[rb,R]

|ρ(r, t)− pλ(r, t)| ≤ u(t)

λ
1
2−2σ

. (22)

Moreover, for t ∈ [δ,∞), u(t) is uniformly bounded.

Proof. The main idea is to use the series representation of the solutions to both models to estimate the error.
There will be a proliferation of constants which we shall repeatedly and unceremoniously denote by C. For
r ∈ (rb, R), we begin by writing:

pλ(r, t)− ρ(r, t) =
∑

{n|αn<M(λ)}

bnψn(r0)ψn(r)e−µn(λ)t − anφn(r0)φn(r)e−αnt

+
∑

{n|αn≥M(λ)}

bnψn(r0)ψn(r)e−µn(λ)t − anφn(r0)φn(r)e−αnt

:= I + II.

We deal with the finitely indexed sum, I, first. Define the index set Aλ = {n | αn < M(λ)}. From now on,
for simplicity of presentation, we write ψn for ψoutn . Let I = Ia + Ib + Ic + Id, where

Ia =
∑
Aλ

bn (ψn(r0)− φn(r0))ψn(r)e−µn(λ)t, Ib =
∑
Aλ

bnφn(r0) (ψn(r)− φn(r)) e−µn(λ)t,

Ic =
∑
Aλ

(bn − an)φn(r0)φn(r)e−µn(λ)t, Id =
∑
Aλ

anφn(r0)φn(r)
(
e−µn(λ)t − e−αnt

)
.

Recalling that γn denotes the nth eigenvalue of the radically symmetric Laplacian on [0, R) with a zero
Neumann boundary condition at R (see Proposition 4.4), we find

|Ia| ≤
∑
Aλ

|bn| |ψn(r)| |ψn(r0)− φn(r0)| e−µnt ≤ C

λ
1
2−

3σ
2

∞∑
n=1

e−γnt.

Here we have applied Proposition 4.4, Lemma 4.1, and Lemma 4.2 (in particular (19), (20), and (21)). The
same argument shows

|Ib| ≤
∑
Aλ

|bn| |ψn(r)− φn(r)| |φn(r0)| e−µnt ≤ C

λ
1
2−

3σ
2

∞∑
n=1

e−γnt,

and using Lemma 4.3 too we find

|Ic| ≤
∑
Aλ

|bn − an| |φn(r0)| |φn(r)| e−µnt ≤ C

λ
1
2−

3σ
2

∞∑
n=1

e−γnt.

Finally, we have that

|Id| ≤
∑
Aλ

|an| |φn(r)| |φn(r0)|
∣∣∣1− e−(αn−µn)t∣∣∣ e−µnt.
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For s ≥ 0, 1− e−s ≤ |s| so that, using the same lemmas as before and Theorem 4.1,

|Id| ≤ C
∑
Aλ

e−µnt |αn − µn| t ≤
C

λ
1
2−2σ

∞∑
n=1

t e−µnt.

We now bound the tail of the series, II. First define the index set Bλ = {n | αn ≥ M(λ)}. We now
specify the choice K0 > 4π2/(R − rb)2 which guarantees C∗1

√
K0 > 1 (see Remark 4.2 after the proof of

Proposition 4.5). Using the uniform bounds on ψn, φn, an, and bn and Proposition 4.5 we find

|II| ≤ C1

∑
n≥C∗

1

√
K0λ

σ
2

e−µnt + C2

∑
n≥C∗

1

√
K0λ

σ
2

e−αnt ≤ C
∑
n≥λ

σ
2

e−γnt.

We thus obtain the error estimate that

|ρ(r, t)− pλ(r, t)| ≤ C

 1

λ
1
2−

3σ
2

∞∑
n=1

e−γnt +
1

λ
1
2−2σ

∞∑
n=1

t e−µnt +
∑
n≥λ

σ
2

e−γnt

 . (23)

We estimate the terms in (23) one at a time. First

∞∑
n=1

e−γnt =

∞∑
n=0

exp

[
−n

2tπ2

R2

]
≤ 1 +

∫ ∞
0

exp

[
−x

2tπ2

R2

]
dx = 1 +

R√
4πt

,

while

∞∑
n=1

te−µnt ≤ te−µ1(λ)t +

∞∑
n=2

te−γnt

≤ te−µ1(λ0)t +

∞∑
n=1

t exp

[
−n

2tπ2

R2

]

≤ 1

eµ1(λ0)
+
R2

eπ2

∞∑
n=1

1

n2
≤ C̄.

Finally, we bound the third term in (23):∑
n≥λ

σ
2

e−γnt =
∑

n≥λ
σ
2 −1

exp

[
−n

2tπ2

R2

]

≤
∫ ∞
λ
σ
2 −2

exp

[
−x

2tπ2

R2

]
dx

≤ R√
4πt

erfc

(
(λσ/2 − 2)

√
tπ

R

)
≤ ĈR√

4πt
e−C̃λ

σt.

Combining the preceding estimates we have

|ρ(r, t)− pλ(r, t)| ≤ C

λ
1
2−2σ

[
1

λσ/2

(
1 +

R√
4πt

)
+ C̄ + Ĉλ

1
2−2σ

R√
4πt

e−C̃λ
σt

]
≤ C

λ
1
2−2σ

[
1√
t

(
1 +

C(σ)

t
1
2σ−2

)
+ 1

]
.
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Here we absorbed the maximum of the many constants into C and

C(σ) ≡
(

1

C̃e

[
1

2σ
− 2

]) 1
2σ−2

.

Let

u(t) := C

[
1√
t

(
1 +

C(σ)

t
1
2σ−2

)
+ 1

]
.

For t ≥ δ > 0 we see that u(t) is uniformly bounded, concluding the proof. For any ε sufficently small, the
choice σ = ε

2 then gives the bound (1) stated in the introduction.

Remark 4.5. Note that even for t ≥ δ > 0, u(t) → ∞ as σ → 0 because u(t) blows up like
(

1√
δσ

) 1
σ

. That

said, we expect this divergence is an artifact of our eigenfunction expansion-based method of proof.

5 Conclusion

We have shown for the special case of two molecules that may undergo the annihilation reaction, A+B→ ∅,
with one of the two molecules stationary, the solution to the Doi model (24) converges to the solution of the

Smoluchowski model (25) as λ→∞. A rigorous asymptotic convergence rate that is O(λ−
1
2+ε), for all fixed

ε > 0, was proven for the maximum difference between the two models over all r ∈ (rb, R) and t ∈ (δ,∞) (for
any fixed δ > 0). Numerical evaluation of the exact eigenfunction expansions, binding time distributions,
and mean binding times illustrated this convergence rate, and demonstrated that for sufficiently large fixed
values of λ the difference between the two models for realistic parameter regimes scaled like r−1b as rb was
decreased. For biologically relevant values of rb, such as the reaction-radius for a protein diffusing to a fixed
DNA binding site, it was found that λ should be chosen at least as large as 1011s−1 for the mean binding
time in the two models to differ by less than 1%.

There are a number of extensions of the current work that would aid in clarifying the rigorous relationship
between the Smoluchowski and Doi models. Foremost would be the study of more detailed, biologically
realistic, models in which multiple diffusing and reacting chemical species are present. Such models require
the introduction of unbinding reactions, C → A + B, which in the Smoluchowski model require the use
of unbinding radii (a separation, greater than rb, at which to place the newly created molecules to avoid
their immediate rebinding). As numerical methods to solve the Doi and Smoluchowski models have been
used to study biological systems, understanding how parameters in the Doi model should be chosen so as
to accurately approximate the Smoluchowski model would greatly aid in comparing predictions by these
different approaches.

6 Acknowledgments

SAI and ICA are supported by NSF grant DMS-0920886. ICA was also supported by the Center for Bio-
dynamics NSF RTG grant DMS-0602204. The authors thank the referees for their helpful comments and
suggestions.



18

A Cumulative Binding Time Distributions

The cumulative binding time distributions we evaluted in Section 3, Prob [TSmol < t] and Prob [TDoi < t] are
given by the series expansions

Prob [TSmol < t] = 1− 4π

∫ R

rb

ρ(r, t)r2 dr

= 1−
∞∑
n=1

anSnφn(r0)e−αnt,

and

Prob [TDoi < t] = 1− 4π

∫ R

0

pλ(r, t)r2 dr

= 1−
∞∑
n=1

bnDnψn(r0)e−µnt,

where for

h(α) =
1

α
3
2R

[(
(R− rb)

√
α
)

cos
(
(R− rb)

√
α
)
− (1 +Rrbα) sin

(
(R− rb)

√
α
)]
,

we have

Sn =

∫ R

rb

φn(r)r2 dr = h (αn) ,

and

Dn =

∫ R

0

ψn(r)r2 dr =

∫ rb

0

ψinn (r)r2 dr +

∫ R

rb

ψoutn (r)r2 dr

=

{
`n
[
rb
√
λ− µn coth(rb

√
λ− µn)− 1

]
+ h (µn) , µn < λ,

`n
[
rb
√
µn − λ cot(rb

√
µn − λ)− 1

]
+ h (µn) , µn > λ,

with

`n =

1
R
√
µn

sin(
√
µn(R− rb))− cos(

√
µn(R− rb))

λ− µn
.

B Mean Binding Time

Let E [TDoi] denote the mean time at which the two molecules in the Doi model (3) first react when initially
separated by r0. E [TDoi] can be shown to satisfy [15, 39]

∆r0E [TDoi] (r0)− λ̂1{r<rb}(r)E [TDoi] (r0) = − 1

D
, 0 ≤ r0 < R, (24)

with the boundary condition,

∂E [TDoi]

∂r0
(R) = 0.

(Here λ̂ = λ/D.) The solution to (24) is given by (12).



The mean time, E [TSmol] (r0), at which the two molecules in the Smoluchowski model (2) first react when
initially separated by r0 can be shown to satisfy [15, 39]

∆r0E [TSmol] (r0) = − 1

D
, rb < r0 < R, (25)

with the boundary conditions,

E [TSmol] (rb) = 0,
∂E [TSmol]

∂r0
(R) = 0.

The solution to (25) is given by (13).

C Discrete Space and Time Points

The spatial evaluation points, ri, are generated in MATLAB by

r1 = rb + rb ∗ [ 5e−6 1e−5 5e−5 1e−4 5e−4 1e−3 5e−3 ] ' ;
r = [ r1 ; ( . 0 1 : . 0 1 : 1 ) ' ∗ (R−rb ) + rb ] ;

Listing 1: ri points

The time evaluation points, tj , are generated in MATLAB by

t = [ 1 e−5 1e−4 1e−3 . 0 1 : . 0 1 : 1 0 0 101 : 1 : 200 200 :10 :1000 1 2 0 0 : 2 0 0 : 1 0 0 0 0 ] ' ;

Listing 2: tj points
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