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REACTIVE BOUNDARY CONDITIONS AS LIMITS OF
INTERACTION POTENTIALS FOR BROWNIAN

AND LANGEVIN DYNAMICS∗

S. JONATHAN CHAPMAN† , RADEK ERBAN† , AND SAMUEL A. ISAACSON‡

Abstract. A popular approach to modeling bimolecular reactions between diffusing molecules
is through the use of reactive boundary conditions. One common model is the Smoluchowski partial
adsorption condition, which uses a Robin boundary condition in the separation coordinate between
two possible reactants. This boundary condition can be interpreted as an idealization of a reactive
interaction potential model, in which a potential barrier must be surmounted before reactions can
occur. In this work we show how the reactive boundary condition arises as the limit of an interac-
tion potential encoding a steep barrier within a shrinking region in the particle separation, where
molecules react instantly upon reaching the peak of the barrier. The limiting boundary condition
is derived by the method of matched asymptotic expansions, and is shown to depend critically on
the relative rate of increase of the barrier height as the width of the potential is decreased. Limiting
boundary conditions for the same interaction potential in both the overdamped Fokker–Planck equa-
tion (Brownian dynamics) and the Kramers equation (Langevin dynamics) are investigated. It is
shown that different scalings are required in the two models to recover reactive boundary conditions
that are consistent in the high friction limit (where the Kramers equation solution converges to the
solution of the Fokker–Planck equation).
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1. Introduction. Let X(t) ∈ Ω ⊂ R
d and V (t) ∈ R

d denote the stochastic
processes for position and velocity at time t of a molecule moving in the d-dimensional
domain Ω (where d ∈ N) according to the Langevin dynamics (LD):

(1.1)
dX(t) = V (t) dt,

dV (t) = −(β V (t) +Dβ∇ϕ(X(t))
)
dt+ β

√
2D dW (t),

where β is the friction constant, D is the diffusion constant, ϕ : Ω → R is the potential
(to be specified later), and W (t) denotes a d-dimensional Brownian motion. Here β is
assumed to have units of “per time,” D is assumed to have units of “distance squared
per time,” and ϕ is assumed to be nondimensional. In physical units, the potential
energy of a molecule at x is then kBTϕ(x), where kB is the Boltzmann constant and
T is the absolute temperature. If m denotes the mass of the molecule, the Einstein
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relation gives that mDβ = kBT , so that excepting the noise term, (1.1) follows from
Newton’s second law of motion.

Passing to the overdamped limit β → ∞ in (1.1), we obtain the Brownian dy-
namics (BD) model for X(t) as follows:

(1.2) dX(t) = D∇ϕ(X(t)) dt+
√
2D dW (t).

In the special case that ϕ ≡ 0, the molecule simply moves by Brownian motion,

(1.3) dX(t) =
√
2D dW (t).

Equation (1.3) is a popular description for the movement of molecules within cells.
It has been used to model spatial transport in a number of computational pack-
ages for simulating intracellular processes, including Smoldyn [2, 3, 30], Green’s
function reaction dynamics (GFRD) [34, 35], and first-passage kinetic Monte Carlo
(FPKMC) [27, 28]. A common approach for coupling molecular interactions (diffusion-
limited reactions) to (1.3) in these packages is to postulate that reactions can occur
by one of several possible mechanisms if the corresponding reactants are sufficiently
close [1, 16].

The LD model (1.1) with ϕ ≡ 0 provides a more microscopic description of diffu-
sion than the BD model (1.3). It computes both position and velocity of a molecule by
assuming that the molecule is subject to a normally distributed random force during
each time increment. In particular, LD can be considered as an intermediate descrip-
tion between detailed molecular dynamics (MD) simulations and BD simulators [12].
Typical full-atom MD simulations use time steps of the order of 1 fs = 10−15 s [24],
while Smoldyn discretizes (1.3) with times steps ranging from nanoseconds to milli-
seconds, depending on a particular application [30]. Stochastic descriptions which
compute both position and velocity of diffusing particles, including LD, are applica-
ble on intermediate time scales [12, 13].

One advantage of Smoldyn or similar BD packages is that they can simulate whole-
cell dynamics. BD models based on (1.3) have been applied to a number of biological
systems including signal transduction in E. coli [26], actin dynamics in filopodia [18],
the mitogen-activated protein kinase (MAPK) pathway [34], and intracellular calcium
dynamics [10]. In these applications, the positions of all diffusing molecules are up-
dated according to (1.3), and the distances between each pair of possible reactants
(for bimolecular reactions) are calculated. Each reaction then occurs (with a given
probability) when the computed distance is smaller than a specified reaction-radius
(as in Smoldyn), or alternatively occurs when the computed distance exactly equals a
specified reaction-radius (as in GFRD and FPKMC). To the best of our knowledge,
there is no established spatio-temporal simulator of intracellular processes based on
the LD model. In order to develop one, one has to first investigate how bimolecular
reactions might be described in the LD context.

One possible way to implement bimolecular reactions in LD is to adopt the same
approach as in BD. That is, the positions and velocities of a diffusing molecule
would evolve according to the LD model (1.1) (with ϕ ≡ 0), and each bimolecular
reaction would occur (with a given probability) if the distance between two reactants is
smaller than the reaction-radius. However, as normally formulated, this description of
bimolecular interactions would not make use of a molecule’s velocity (as is available
in LD). That is, the LD bimolecular reaction model would not provide any more
physical detail than a BD model.
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In this work we step back from the normal BD bimolecular reaction model to
the more microscopic reaction mechanism of a molecular interaction potential. The
general potential forms we consider represent an irreversible bimolecular reaction
as a molecule surmounting a steep potential barrier in the separation coordinate
from a stationary target molecule, after which it enters an infinitely deep well (the
“bound” state). We show that the popular Smoluchowski partial-adsorption BD re-
action model [22] can be derived in the simultaneous limit that the width of the
barrier approaches zero and the height of the barrier becomes infinite. Using the
same potential model, we then examine what limiting reactive mechanism arises in
the corresponding LD model, obtaining a specular reflection boundary condition. We
conclude by showing that in the high friction limit, β → ∞, the LD model with the
specular reflection bimolecular reaction model converges back to the Smoluchowski
partial-adsorption BD reaction model, consistent with the kinetic boundary layer
studies of [7, 8, 23]. Our results demonstrate how an interaction potential model for a
bimolecular reaction can be parametrized in either LD or BD models to be consistent
with a BD model based on a partial-adsorption reaction mechanism.

2. Problem setup. We consider the movement of a molecule that can undergo
an irreversible bimolecular reaction with a second stationary molecule, hereafter called
the reactive target, which is modeled as a sphere of radius rb. Let Br(0) ⊂ R

d denote
the d-dimensional ball of radius r centered at the origin. Then the reactive target
is given as ∂Brb(0). We assume that the diffusing molecule moves within the d-
dimensional domain Ω which satisfies

(2.1)
(
BL1(0) \Brb(0)

)
⊂ Ω for rb < L1 <∞.

Equation (2.1) defines Ω as the domain which is the exterior to the reactive target
(sphere ∂Brb(0)) and which includes all points which have a distance less than L1 −
rb > 0 from the reactive target. A simple example of Ω satisfying (2.1), for which we
can find some explicit solutions in section 3.1, is given as

(2.2) Ω = R
d \Brb(0).

This is a standard ansatz for deriving formulas for the reaction-radius in BD descrip-
tions, e.g., in the Smoluchowski or Doi models [1, 16, 32]. In most cases, we will
further assume that Ω is bounded with smooth boundary; i.e., (2.1) is altered by a
bound from above:

(2.3)
(
BL1(0) \Brb(0)

)
⊂ Ω ⊂ BL2(0) for rb < L1 < L2 <∞.

A spherically symmetric example of domain Ω satisfying condition (2.3) is given as

(2.4) Ω = BL(0) \Brb(0) for rb < L <∞.

If dimension d = 1, then by the “surface of the ball” we mean the origin, i.e.,
∂Brb(0) = {0} and rb = 0. Then (2.4) reduces to the finite interval Ω = [0, L],
which we use in our numerical examples.

We assume that the molecule is adsorbed instantly upon reaching the surface of
the reactive target, so that

(2.5) trajectory X(t) is terminated if X(t) ∈ ∂Brb(0).
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In order to reach the surface, the molecule has to overcome a potential barrier, which,
denoting r = |x|, is given by

(2.6) ϕ(x) ≡ ϕ(r) =

⎧⎨
⎩ϕψ

(
r − rb
ε

)
for rb ≤ r ≤ rb + ε,

0 for r > rb + ε,

where ε > 0 and ϕ > 0 are positive constants and ψ : [0, 1] → [0, 1] is a smooth
function with a (unique) global maximum at ψ(0) = 1 and ψ(1) = 0. These imply

ψ(z) < ψ(0), 0 < z ≤ 1,

with

dψ

dz
(0) < 0.

We assume that ε in (2.6) is chosen sufficiently small so that ε
 (L1 − rb) for rb and
L1 given in assumption (2.1).

Instead of studying the Langevin equation (1.1) we shall work with the corre-
sponding equation for the probability density that X(t) = x and V (t) = v, denoted
p(x,v, t), which satisfies the Kramers equation (also called the phase-space Fokker–
Planck equation)

(2.7)
∂p

∂t
+ v · ∇xp = β∇v · [v p+Dp∇xϕ+ β D∇vp] for x ∈ Ω,v ∈ Rd,

where∇x (resp., ∇v) denotes the gradient in the x (resp., v) variable. Considering the
overdamped limit (1.2), the corresponding equation for the probability distribution
p(x, t) is given as the Fokker–Planck equation

(2.8)
∂p

∂t
= D∇x · [∇xp+ p∇xϕ

]
for x ∈ Ω.

In this paper, we show that (2.7) and (2.8) with fully adsorbing boundary condition
(2.5) on ∂Brb(0) are in suitable limits equivalent to a diffusion process with partially
adsorbing (reactive, Robin) boundary condition on ∂Brb(0), namely to the problem

(2.9)
∂p

∂t
= DΔxp for x ∈ Ω,

with

(2.10) D∇xp(x) · x

rb
= K p(x) for x ∈ ∂Brb(0),

where K is a suitable Robin boundary constant (reactivity of the boundary) and
x/rb is a unit normal vector to sphere ∂Brb(0) at point x. Considering spherically
symmetric Ω given by (2.2) or (2.4), and a spherically symmetric initial condition, we
can rewrite the Fokker–Planck equation (2.8) as

(2.11)
∂p

∂t
=

D

rd−1

∂

∂r

(
rd−1

[
∂p

∂r
+ p

dϕ

dr

])
,
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where p(r, t) is the radial distribution function. Then the limiting Robin boundary
problem (2.9)–(2.10) is given as

(2.12)
∂p

∂t
=

D

rd−1

∂

∂r

(
rd−1 ∂p

∂r

)
, with D

∂p

∂r
(rb) = K p(rb).

The Robin boundary constant K in (2.10) and (2.12) is (together with D) an ex-
perimentally determinable (macroscopic) parameter. In this way, we are able to
parametrize both BD and LD models using experimental data.

The rest of this paper is organized as follows. In section 3, we investigate the
BD description (1.2). To gain some insight into this problem, we first consider the
specific case of a linear interaction potential and spherically symmetric domain (2.2)
for d = 3. In this case, we can explicitly solve the corresponding Fokker–Planck
equation as shown in section 3.1, and prove the convergence of this solution, as ε→ 0
and ϕ→ ∞, to the solution of a model involving a reactive Robin boundary condition.
We then continue in section 3.2 with an asymptotic analysis, in the same dual limit,
of the full BD model (1.2) in general domain (2.3). In section 4, we investigate the
LD model (1.1) and derive a boundary condition in the limit ε → 0. This boundary
condition is then used in section 5 to connect the LD model to a BD model with
Robin boundary condition in the dual limits of high friction, β → ∞, and large
potential barrier, ϕ → ∞. Numerical examples supporting our analysis are provided
in sections 4.1 and 5.1. We conclude with discussion in section 6.

3. Brownian dynamics. In this section we consider the overdamped problem
in which the particle moves by BD, i.e., its position X(t) evolves according to (1.2)
with the interaction potential given by (2.6).

3.1. Simple three-dimensional example with explicit solution. Before
investigating the general problem in R

d, as a warm-up we first consider a simplified
special case to gain insight into how to recover the Robin boundary condition (2.12)
from an interaction potential. We consider the spherically symmetric domain (2.2)
for d = 3. The steady-state spherically symmetric Fokker–Planck equation (2.11) is
then given by

(3.1) 0 =
D

r2
∂

∂r

(
r2
[
∂p

∂r
+ p

dϕ

dr

])
for rb < r <∞,

where the fully adsorbing boundary condition (2.5) implies a Dirichlet boundary con-
dition at r = rb, i.e., p(rb) = 0. We consider constant concentration p∞ > 0 far away
from the reactive surface, i.e.,1

(3.2) lim
r→∞ p(r) = p∞.

We also assume that the potential ϕ(r) is given by (2.6), where ψ : [0, 1] → [0, 1] is
the linear function

(3.3) ψ(z) = 1− z.

1Of course, p as defined here is not a probability distribution, since it does not integrate to unity
on the infinite domain r > rb. The problem as stated arises from a limiting process in which p is
rescaled appropriately as the domain size tends to infinity.
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Then

dϕ

dr
(r) ≡

⎧⎨
⎩−ϕ

ε
, rb < r < rb + ε,

0, rb + ε < r.

Substituting into (3.1) and making use of the boundary conditions at r = rb and
r = ∞, we can solve piecewise to obtain a solution on (rb, rb + ε) and a solution on
(rb + ε,∞). On each interval the solution is defined up to an unknown constant. By
enforcing continuity of the flux at r = rb, we can eliminate one constant to obtain

(3.4) p(r) =

⎧⎪⎨
⎪⎩
A

∫ r

rb

1

s2
exp

[
ϕ(r − s)

ε

]
ds for rb ≤ r ≤ rb + ε,

p∞ − A

r
for r > rb + ε,

where the last constant, A, is determined by the continuity of p(r, t) at r = rb + ε.
This gives

A =
(rb + ε) p∞

1 + (rb + ε)β(ε, ϕ)
,

with

(3.5) β(ε, ϕ) = ε

∫ 1

0

exp[ϕ(1 − s) ]

(rb + εs)2
ds.

To recover the Robin condition (2.12) as ε→ 0 and ϕ→ ∞, we need

lim
ε→0
ϕ→∞

lim
r→(rb+ε)+

[
D
∂p

∂r
(r) −Kp(r)

]
= 0,

which is equivalent to

lim
ε→0
ϕ→∞

D +K(rb + ε)

(rb + ε)
(
1 + (rb + ε)β(ε, ϕ)

) = K

or, simplifying,

(3.6) lim
ε→0
ϕ→∞

β(ε, ϕ) =
D

Kr2b
.

We note that

(3.7) 0 ≤ β(ε, ϕ) ≤ ε

r2b

∫ 1

0

exp[ϕ(1 − s) ] ds =
ε (exp[ϕ ]− 1)

r2b ϕ
.

Therefore, β(ε, ϕ) will have a finite limit if ε exp[ϕ ]/ϕ has a finite limit. This moti-
vates the choice

(3.8) ε =
Dϕ exp[−ϕ ]

K
.
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Using (3.5), we have∣∣∣∣β(ε, ϕ)− ε

r2b

∫ 1

0

exp[ϕ(1 − s) ] ds

∣∣∣∣ =
∣∣∣∣ε
∫ 1

0

exp[ϕ(1 − s) ]

(
1

(rb + εs)2
− 1

r2b

)
ds

∣∣∣∣
≤ D ε (2rb + ε)

K r4b
,(3.9)

which converges to zero as ε→ 0. We therefore conclude that

lim
ε→0, ϕ→∞,

where ε and ϕ are
related by (3.8)

β(ε, ϕ) = lim
ε→0, ϕ→∞,

where ε and ϕ are
related by (3.8)

ε

r2b

∫ 1

0

exp[ϕ(1 − s) ] ds

= lim
ϕ→∞

Dϕ exp[−ϕ ]

K r2b

∫ 1

0

exp[ϕ(1− s) ] ds =
D

Kr2b
,

so that we get (3.6). In particular, we recover the Robin boundary condition with
Robin constant K.

The steady-state solution to the limiting Robin boundary condition problem (2.12)
with (3.2) is given by

p(r) = p∞

⎡
⎢⎢⎣1− 1

1 +
D

Krb

rb
r

⎤
⎥⎥⎦ for rb < r <∞.

We now examine the error between this limit and the solution (3.4) for two cases:
rb ≤ r ≤ rb + ε and r > rb + ε. For the latter we have

|p(r) − p(r)| =
p∞
∣∣∣ ε(1 + D

Krb
− rb β(ε, ϕ)

)
+ r2b

(
D

Kr2b
− β(ε, ϕ)

)∣∣∣
r
(
1 + (rb + ε)β(ε, ϕ)

)(
1 + D

Krb

) .

We can estimate that the denominator is greater than r. Consequently,

|p(r)− p(r)| < p∞ ε

r

(
1 +

D

Krb
+ rb β(ε, ϕ)

)
+
p∞ r2b
r

∣∣∣∣ DKr2b − β(ε, ϕ)

∣∣∣∣ .
Using (3.7) and the definition of ε (3.8), we have β(ε, ϕ) ∼ O(1) as ε→ 0. Using (3.9),
we conclude that the second term on the right-hand side is O(ε/r) as ε → 0. Thus,
we conclude

(3.10) |p(r)− p(r)| = O
(ε
r

)
= O(ε) for r > rb + ε.

On the other hand, we have

sup
r∈(rb,rb+ε)

|p(r) − p(r)| ≥ |p(rb)− p(rb)| = p(rb) =
p∞D

Krb +D
> 0.

The maximum error between the two models is therefore O(1) as ε → 0 (where ϕ
satisfies (3.8)), illustrating the nonuniformity of the error within the region where the
potential interaction is nonzero.
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Note, while the maximum norm (i.e., L∞ norm) of the difference between solutions
does not converge on (rb, rb + ε), both p(r) and p(r) are uniformly bounded on
(rb, rb + ε) since

sup
r∈(rb,rb+ε)

p(r) ≤ Aβ(ε, ϕ) ≤ 2Dp∞
K rb

,

sup
r∈(rb,rb+ε)

p(r) ≤ p∞.

As such, using that the maximum norm error is O(ε/r) on (rb + ε,∞) by (3.10), we
find that the q-norm converges for any 3 < q <∞:

‖p(r)− p(r)‖q =

(∫ ∞

rb

|p(r)− p(r)|q r2 dr
) 1

q

= O
(
ε

1
q

)
.

Here, the lower bound q > 3 is an artifact of our working on an unbounded domain,
which requires integrability of |p(r)− p(r)|q r2 on (rb,∞). If our domain was bounded,
i.e., given by (2.4), and we used the Dirichlet boundary condition that p(L) = p∞, we
would expect a similar estimate to hold for all 1 ≤ q <∞.

In summary, we have found that in the special case of a linear potential barrier,
by taking the height of the barrier ϕ→ ∞ and then choosing the width of the barrier,
ε, to decrease exponentially in the height (i.e., according to (3.8)), we can recover the
solution to the diffusion equation with Robin boundary condition. We may therefore
interpret the Robin boundary condition model for bimolecular reactions between two
molecules as approximating an underlying interaction potential, in which the two
molecules must surmount a steep potential barrier before entering a bound state
represented by a deep well.

Remark. In [31] it was shown how the Robin constant can be chosen to give the
same diffusion-limited reaction rate in two steady-state spherically symmetric models
both including the same fixed interaction potential, with one using a zero Dirichlet
boundary condition at rb (as in (3.1)), and the other using a Robin condition at rb+ε
for any fixed ε > 0. The argument in [31] can be modified to match diffusion-limited
reaction rates in the two models considered in this section (i.e., (3.1) with p(rb) = 0
and the steady-state diffusion equation with Robin boundary condition satisfied by
p̄(r)). It is satisfying to note that choosing K to match the diffusion limited rates
in this manner also gives the relationship (3.8) between K, ε, and ϕ. We therefore
conclude that choosing K to match the diffusion-limited reaction rates of the two
models of this section is sufficient to give convergence of p(r) to p̄(r) as ε → 0 and
ϕ→ ∞.

3.2. Asymptotics for a general BD model with a general interaction
potential. To analyze (2.8) for arbitrary d ∈ N with general potential ϕ(r) in the
form (2.6), we follow the approach of Pego [29] and Li et al. [25]. We use the method
of matched asymptotic expansions in a general bounded domain Ω which satisfies
(2.3) and has a smooth boundary. First, we consider an inner solution in a boundary
layer near ∂Brb(0). Let

(3.11) z =
r − rb
ε

denote the stretched distance of a point x from the reactive boundary. We define an
inner solution p̃(z,x, t). The second argument should actually be x̂ = x/ |x|, but we
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follow the method of [29] and instead assume that

p̃(z, λx, t) = p̃(z,x, t)

for all λ > 0 (i.e., the length of x is accounted for by z). We note the identities

(3.12)
∇x · x̂ =

d− 1

r
=

d− 1

rb + εz
,

∇xz =
x̂

ε
.

In the new coordinate system

∇xp→ ∇xp̃+
1

ε

∂p̃

∂z
x̂,

Δxp→ Δxp̃+
1

ε

d− 1

rb + εz

∂p̃

∂z
+

1

ε2
∂2p̃

∂z2
,

where we have used (3.12) and that

x̂ · ∇y
∂p̃

∂z
(z,y, t)

∣∣∣
y=x

= 0,

as p̃ is assumed constant when the second argument is varied along the x̂ direction.
From (2.8) we find the inner problem (for 0 < z < 1)

∂p̃

∂t
= D

[
Δxp̃+

1

ε

d− 1

rb + εz

∂p̃

∂z
+

1

ε2
∂2p̃

∂z2
+
ϕ

ε2
∂p̃

∂z

dψ

dz
+
ϕ

ε

d− 1

rb + εz
p
dψ

dz
+
ϕ

ε2
p
d2ψ

dz2

]
.

We now expand the inner and outer solutions in ε and denote the leading-order terms
by p̃0 and p0, respectively. The leading-order behavior of the inner solution then
satisfies

∂2p̃0
∂z2

+ ϕ
∂p̃0
∂z

dψ

dz
+ ϕ p̃0

d2ψ

dz2
= 0.

Note that we will find below that in the distinguished limit, ϕ depends on ε in a
logarithmic manner (see (3.13)) so that retaining ϕ here is consistent with neglecting
terms of O(ε). Solving this equation and using the Dirichlet boundary condition at
z = 0, we find

p̃0(z,x, t) = A(x, t)

∫ z

0

exp
[
ϕ (ψ(z′)− ψ(z))

]
dz′,

where A(x, t) is an unknown constant, also satisfying the dilation property

A(λx, t) = A(x, t) for λ > 0.

The leading-order term of the outer solution, p0, satisfies the diffusion equation (2.9)
away from the reactive boundary. Our matching conditions are

lim
x→∂Brb

(0)
p0(x, t) = lim

z→1
p̃0(z,x, t) = A(x, t)

∫ 1

0

exp
[
ϕψ(z′)

]
dz′,

lim
x→∂Brb

(0)
∇p0(x, t) · x̂ = lim

x→∂Brb
(0)

∂p0
∂r

= lim
z→1

1

ε

[
∂p̃0
∂z

+ ϕ p̃0
dψ

dz

]
=
A(x, t)

ε
.
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Combining these two equations, for x ∈ ∂Brb(0) we find

D∇xp(x) · x

rb
= D

∂p0
∂r

(x, t) =
Dp0(x, t)

ε
∫ 1

0 exp
[
ϕψ(z′)

]
dz′

∼ Dϕ

ε exp(ϕ)

∣∣∣∣dψdz (0)
∣∣∣∣ p0(x, t),

where the last approximation is obtained using Laplace’s method in the limit ϕ→ ∞.
Thus we recover the desired Robin boundary condition (2.10) if ϕ → ∞ and ε → 0
such that

(3.13) ε =
Dϕ

K exp(ϕ)

∣∣∣∣dψdz (0)
∣∣∣∣ .

In summary, we have used the method of matched asymptotic expansions to ex-
amine scaling limits for a general set of potential interactions between two particles.
The potentials were assumed to be short-range, forming a high barrier as the separa-
tion between the molecules approaches a fixed “reaction-radius,” and then a deep well
once this barrier is surmounted. In the limit that the height of the barrier, ϕ → ∞,
and the width of the barrier, ε, decreases to zero exponentially in the height, we re-
cover the solution to the diffusion equation with Robin boundary condition. We may
therefore interpret bimolecular reactions between two molecules modeled with a Robin
boundary condition as an approximation to one of many possible underlying poten-
tial interactions. These interactions are characterized by the two molecules needing
to surmount a steep potential barrier before entering a bound state represented by a
deep well.

Remark. If ε is chosen to approach zero more slowly than (3.13), then we recover
a zero Neumann boundary condition at the reactive surface,

(3.14)
∂p0
∂r

(x, t) = 0 for x ∈ ∂Brb(0).

Likewise, if ε is chosen to approach zero faster than (3.13), then we recover the zero
Dirichlet boundary condition that

p(x, t) = 0 for x ∈ ∂Brb(0).

4. Langevin dynamics. We now consider the LD model (1.1) in a bounded
d-dimensional domain satisfying (2.3). The reactive target is again taken to be the
surface of the d-dimensional sphere of radius rb about the origin. It is again assumed
that the molecule is adsorbed instantly upon reaching the surface of the sphere; i.e., we
consider the boundary condition (2.5) together with spherically symmetric interaction
potential ϕ given by (2.6). We leave unspecified any boundary condition on ∂Ω \
∂Brb(0), as it is not needed in the following analysis.

Instead of studying the Langevin equation (1.1) we work with the corresponding
Kramers equation (2.7). Since x/rb is the normal to ∂Brb(0) at x, the adsorbing
boundary condition (2.5) means that the Kramers equation (2.7) is coupled with the
Dirichlet boundary condition

(4.1) p(x,v, t) = 0 for x ∈ ∂Brb(0) and v · x > 0

and the unspecified boundary condition on ∂Ω\∂Brb(0). We are interested in various
limits of (2.7) as ε → 0, ϕ → ∞, and β → ∞ in which the interaction potential can
be approximated by an appropriate reactive boundary condition. In the BD models
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of section 3 our goal was to derive the widely used Robin boundary condition. To
the best of our knowledge, in the LD model we now investigate, there is no standard
reactive boundary condition for bimolecular reactions. Therefore, we wish to see what,
if any, reactive boundary condition arises when considering similar limits of ε and ϕ.

As in section 3.2, to study these limits we will match an inner solution within an
O(ε) boundary layer about ∂Brb(0) to an outer solution when far from the reactive
boundary. Using the same notation as in section 3.2, we denote by z the stretched
distance from the boundary, given by (3.11). We also introduce a rescaled radial
velocity,

ν =
vr
v̂r

=
v · x̂
v̂r

,

where x̂ = x/ |x| is a unit vector in the x direction, vr = v · x̂ is the radial velocity
into Ω from ∂Brb(0), and v̂r is a scaling constant in the radial velocity that will be
specified later. In the inner region we denote the density by p̃(z,x, ν,v, t), where we
assume that p̃ is constant whenever x is varied in the radial direction, and when the
component of the velocity, v, in the radial direction is varied. That is,

p̃(z,x, ν,v, t) = p̃(z, λx, ν,v, t) for λ > 0,

p̃(z,x, ν,v, t) = p̃(z,x, ν,v + αx̂, t) for α ∈ R.

In addition to the identities (3.12), we note that

(4.2) ∇xν =
v

v̂r(rb + εz)
− ν x̂

rb + εz
.

Using (3.12) and (4.2) we find the derivative operators in (2.7) transform in the new
coordinates into

∇xp→ ∇xp̃+
1

ε

∂p̃

∂z
x̂+

(
v

v̂r(rb + εz)
− ν x̂

rb + εz

)
∂p̃

∂ν
,

∇vp→ ∇vp̃+
1

v̂r

∂p̃

∂ν
x̂,

Δvp→ Δvp̃+
1

v̂2r

∂2p̃

∂ν2
,

where we have used that

x̂ · ∇v′
∂p̃

∂ν
(z,x, ν,v′, t)

∣∣∣
v′=v

= 0.

Using (2.6), (2.7) can be transformed into

∂p̃

∂t
+ v · ∇xp̃+

v̂r ν

ε

∂p̃

∂z
+

(
v · v

v̂r(rb + εz)
− v̂r ν

2

rb + εz

)
∂p̃

∂ν

= β

(
dp̃+ v · ∇v p̃+ ν

∂p̃

∂ν
+
ϕD

v̂r ε

dψ

dz

∂p̃

∂ν
+ βDΔvp̃+

βD

v̂2r

∂2p̃

∂ν2

)
.

We consider an asymptotic expansion of the inner solution p̃ (in the boundary layer
about ∂Brb(0)) as ε→ 0 with all other parameters held fixed:

p̃ ∼ p̃(0) + p̃(1)ε+ p̃(2)ε2 + · · · .
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Fig. 1. (a) Characteristic curves of (4.5) for the linear potential (3.3) are shown as blue
lines (color available online). The curve z = ν2/2 is drawn as a thicker black line, dividing the
upper half-plane into a region where the moving particle will escape over the barrier (ν < 0, with
z < ν2/2), a region where all trajectories are reflected (z > ν2/2), and a region where p̃(0) = 0
with all trajectories originating on the z = 0 axis (ν > 0 and z < ν2/2) because of boundary
condition (4.6). (b) Probability of escaping through the left boundary as a function of the incoming
velocity for ε = 0.03 (blue line), ε = 10−2 (green line), and ε = 10−3 (red line). We compute the
trajectories using (4.9)–(4.10) for Δt = 10−7, D = 1, L = 1, β = 103, and ϕ = 2.593. The vertical
dashed line at −√

2ϕβ D separates the two cases of boundary condition (4.7).

Similarly, we also consider an expansion of the outer solution, valid far from ∂Brb(0),
for which we will abuse notation and also denote it by p:

p ∼ p(0) + p(1)ε+ p(2)ε2 + · · · .
At leading order O(ε−1) we find that the inner solution satisfies

(4.3) v̂r ν
∂p̃(0)

∂z
− ϕβ D

v̂r

dψ

dz

∂p̃(0)

∂ν
= 0.

To simplify this equation, we let

(4.4) v̂r =
√
ϕβ D.

This choice emphasizes large velocities, for which we expect the particle to be most
likely to escape over the (reactive) potential barrier. Substituting (4.4) into (4.3), we
obtain

(4.5) ν
∂p̃(0)

∂z
− dψ

dz

∂p̃(0)

∂ν
= 0.

The boundary condition (4.1) implies

(4.6) p̃(0)(0,x, ν,v, t) = 0 for ν > 0.

The solution to (4.5) is constant along the characteristic curves

−ψ(z) = ν2

2
+ C

for C an arbitrary constant. These curves are shown in Figure 1(a) for the linear
potential (3.3). The curve

1− ψ(z) =
ν2

2
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divides the half-plane into three regions. In the region where ν > 0 and 1 − ψ(z) <
ν2/2, p̃(0) is zero due to the boundary condition (4.6). This region corresponds to
particles originating at the boundary and moving into the domain. Since particles
are only adsorbed at the boundary, and not emitted, we find that the solution is
zero throughout the region. Where ν < 0 and 1 − ψ(z) < ν2/2, the solution will be
determined by matching to the outer solution. This region corresponds to particles
entering from outside the boundary layer with sufficient velocity to escape over the
potential barrier and thereby exit through the reactive surface at z = 0. Finally,
in the region 1 − ψ(z) > ν2/2, trajectories with ν < 0 are reflected in a symmetric
manner. For points with ν < 0, the solution will again be given by matching to
the outer solution, while for those with ν > 0, the solution will be determined by
reflection. This region corresponds to particles that enter from outside the boundary
layer with insufficient velocity to escape over the potential barrier. These particles
are then reflected, moving back out of the boundary layer. Note that in the original
variables the curve separating these three regions is given by

1− ψ

(
r − rb
ε

)
=

(v · x̂)2
2ϕβ D

=
v2r

2ϕβ D
.

For x ∈ ∂Brb(0), we match the inner solution as z approaches the edge of the bound-
ary layer to the outer solution as the particle’s spatial position, y, approaches x. That
is, we require

lim
z→1

p̃(0)(z,x, ν,v, t) = lim
y→x

p(0)(y,v, t).

Using that ψ(1) = 0, this matching condition implies that the outer solution satisfies
the following reactive boundary condition for vr ≥ 0 and x ∈ ∂Brb(0):

(4.7) p(0)(x,v, t) =

{
p(0)(x,v − 2 vr x̂, t), 0 ≤ vr <

√
2ϕβ D,

0, vr >
√
2ϕβ D.

When the moving particle reaches the reactive boundary with radial velocity in the
outward direction greater than

√
2ϕβ D, it leaves the domain (i.e., undergoes reac-

tion). In contrast, when the particle reaches the boundary with a slower radial velocity
in the outward direction, it is reflected back into the domain along the direction of
the normal at the point where it hit the reactive boundary. This “specular reflection”
boundary condition is also obtained in the corresponding deterministic Newtonian me-
chanics model. We demonstrate this explicitly for a simple one-dimensional example
in Appendix A.

A version of this boundary condition, given in terms of an arbitrary threshold ve-
locity, is assumed in the kinetic boundary layer investigations of the one-dimensional
Kramers equation in [7, 8] and the three-dimensional spherically symmetric steady-
state Kramers equation in [23]. It is also (briefly) mentioned in [23] that the spe-
cific threshold of

√
2ϕβD we derive is what one might impose across an interface

where the potential is discontinuous with a jump of size ϕ (again, for the three-
dimensional spherically symmetric steady-state Kramers equation). Our asymptotic
analysis shows how this specific threshold velocity arises in the general Kramers equa-
tion as the limit of a shrinking potential boundary layer bordering a Dirichlet bound-
ary condition. We obtain an effective jump in potential at the reactive boundary,
as opposed to an interface within the domain. Contrast this to the limit of the BD
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problem from section 3.2, where in taking ε → 0 with ϕ fixed the influence of the
potential is completely lost (e.g., a zero Dirichlet boundary condition is recovered).

We therefore conclude that the LD model with the interaction potential is, in the
limit that ε→ 0, equivalent to solving the (zero-potential) Kramers equation

(4.8)
∂p

∂t
+ v · ∇xp = β∇v · [v p+ β D∇vp ] for x ∈ Ω,v ∈ Rd,

with the specular reflection reactive boundary condition (4.7) on ∂Brb(0) and what-
ever boundary condition was imposed on ∂Ω. That is, in the limit that the width
of the potential approaches zero, with the barrier height held fixed, we find that the
potential can be approximated by a velocity threshold boundary condition. Here par-
ticles moving sufficiently fast relative to the height of the potential barrier undergo
bimolecular reactions when reaching the reactive boundary, while those moving too
slowly are reflected back into the domain. This result should be applicable for general
short-range potential interactions that form a high barrier as the separation between
two molecules approaches a fixed “reaction-radius” and then a deep well once this
barrier is surmounted. In contrast to the diffusive case, taking the barrier height
ϕ → ∞ (with β fixed) leads to a complete loss of reaction; all particles reaching the
reactive boundary are simply reflected back into the domain.

4.1. A numerical example showing recovery of boundary condition (4.7)
as ε → 0. We consider the LD model (1.1) for d = 1 and the linear potential (3.3).
In the one-dimensional case, our computational domain is interval Ω = [0, L]. We
choose a small time step Δt and compute the position X(t + Δt) and the velocity
V (t+Δt) from the position X(t) and the velocity V (t) by

X(t+Δt) = X(t) + V (t)Δt,(4.9)

V (t+Δt) = V (t)− β V (t)Δt+
Dβ ϕ

ε
χ[0,ε](X(t))Δt+ β

√
2DΔt ξ,(4.10)

where χ[0,ε] : R → {0, 1} is the characteristic function of the interval [0, ε] and ξ
is a normally distributed random variable with zero mean and unit variance. We
implement adsorbing boundaries at both ends x = 0 and x = L of the simulation
domain [0, L] by terminating the computed trajectory wheneverX(t) < 0 orX(t) > L.

In this paper, we are interested in understanding the dependence of the behavior
of the LD model (1.1) on its parameters ε, ϕ, and β. In particular, we choose the
values of other parameters equal to 1, namely

(4.11) D = L = 1.

In this section, we are interested in the limit ε → 0. We want to illustrate the
boundary condition (4.7). Therefore we fix the values of ϕ and β and simulate the
LD model (1.1) for different values of ε.

For each value of ε, we compute many trajectories according to (4.9)–(4.10),
starting from the middle of the domain, i.e., X(0) = L/2, with initial velocity V (0)
sampled from the normal distribution with zero mean and variance β D. Whenever
a particle enters the region [0, ε], we record its incoming velocity. Then we follow its
trajectory in the region [0, ε] and record one of two possible outputs:

(1) the particle leaves Ω through its left boundary (i.e., X(t) < 0); or
(2) the particle returns back to the region (ε, L] of domain Ω (i.e., X(t) > ε).
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The fraction of particles which left the domain Ω through its left boundary as a func-
tion of the incoming velocity is plotted in Figure 1(b). This curve can be interpreted
as the probability that the particle escapes over the potential barrier, given its incom-
ing velocity. We also plot the vertical dashed line at −√

2ϕβ D in Figure 1(b). This
threshold separates the two cases of boundary condition (4.7). We observe that the
probability of escape converges to the step function as ε→ 0; i.e., we have numerically
confirmed boundary condition (4.7).

We will return to this example in section 5.1 when we study the convergence of the
LD model to the diffusion process with a Robin boundary condition. In particular, we
use values β = 103 and ϕ = 2.593 in Figure 1(b). This choice of ϕ will be explained
in the following section and then used again in one of our simulations presented in
section 5.1.

5. From Langevin dynamics to Brownian dynamics. We now study the
overdamped limit of the LD model (1.1). We wish to show that in the overdamped
limit where β → ∞, taking ϕ → ∞ in a β-dependent manner will recover a Robin
boundary condition for the limiting diffusion equation. To study the β → ∞ limit,
we extend the asymptotic analysis of the one-dimensional Kramers equation in [14]
to the d-dimensional (zero-potential) Kramers equation (4.8). The kinetic boundary
layer studies in [7, 8, 23] previously investigated the relationship between the velocity
threshold in the specular reflection boundary condition and effective adsorption rate,
K, in the Robin condition. Our approach here differs from those studies, which
primarily used numerical solutions of truncated moment equations or basis function
expansions to estimate empirically determined formulas for the Robin constant, K.
We focus on deriving an explicit formula relating how the potential barrier height, ϕ,
should be chosen as β → ∞ to recover a specified Robin constant.

We begin by rescaling velocity as v =
√
β η and let f(x,η, t) = p(x,v, t). Sub-

stituting into (4.8), we obtain

(5.1)
∂f

∂t
+
√
β η · ∇xf = β∇η · [η p+D∇ηp] .

We expand f in powers of β−1/2 as

f(x,η, t) ∼ f0(x,η, t) +
1√
β
f1(x,η, t) +

1

β
f2(x,η, t) + · · · .

Substituting into (5.1), we find

∇η · [η f0 +D∇ηf0] = 0,(5.2)

∇η · [η f1 +D∇ηf1] = η · ∇xf0,(5.3)

∇η · [η f2 +D∇ηf2] = η · ∇xf1 +
∂f0
∂t

.(5.4)

Implicit in these equations is the assumption that we are interested in time scales for
which

t� 1

β
.

We therefore interpret (5.2) as implying that the velocity distribution component of
f0 relaxes to equilibrium on a faster time scale than t. Denote by τ this faster time
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scale. As discussed in the introduction to [9], up to a normalization constant there
is a unique solution to (5.2) that corresponds to the equilibrium solution of the fast
time scale, time-dependent equation

∂f0
∂τ

= ∇η · [η f0 +D∇ηf0] .

This equilibrium solution is then

f0(x,η, t) = 
(x, t) exp

[
−|η|2

2D

]
,

where 
(x, t) is independent of η. We similarly find that the general solution to (5.3)
is given by

f1(x,η, t) =
(
−∇x
(x, t) · η + ξ(x, t)

)
exp

[
−|η|2

2D

]
,

where ξ(x, t) is also independent of η. Substituting these into (5.4), we see that

∇η · [η f2 +D∇ηf2] =

⎛
⎝∂

∂t

−
d∑

i,j=1

∂2


∂xi∂xj
ηiηj + η · ∇xξ(x, t)

⎞
⎠ exp

[
−|η|2

2D

]
.

Integrating both sides of this equation for all η ∈ R
d, and using that f2(x,η, t) → 0

and |∇ηf2(x,η, t)| → 0 as |η| → ∞, we conclude that 
(x, t) satisfies the diffusion
equation

∂


∂t
= DΔx
.

The probability density that the particle has position x at time t and has not reacted
is given by

u(x, t) =

∫
Rd

p(x,v, t) dv,

implying that to leading order, u is proportional to 
. As such, we expect that as
β → ∞, u satisfies the diffusion equation.

We now show that 
, and hence u, satisfies a Robin boundary condition as β → ∞
when ϕ is chosen to approach infinity in a β-dependent manner. To leading order in
β, the outward flux through a point, x ∈ ∂Brb(0), is

J(x, t) : = −
∫
Rd

(v · x̂) p(x,v, t) dv

∼ −
∫
Rd

(v · x̂)
[
f0

(
x,

v√
β
, t

)
+

1√
β
f1

(
x,

v√
β
, t

)]
dv

= (2 πD β)d/2
(
D∇x
(x, t) · x̂

)
,(5.5)

where, as in previous sections, x̂ = x/ |x|. Let

R(x̂) =
{
v
∣∣v · x̂ < −

√
2ϕβ D

}
=
{
v
∣∣ vr < −

√
2ϕβ D

}
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denote the set of velocities at which particles may escape through the reactive bound-
ary. The specular reflection boundary condition (4.7) implies

J(x, t) = −
∫
R(x̂)

(v · x̂) p(x,v, t) dv

∼ −
∫
R(x̂)

(v · x̂)
[
f0

(
x,

v√
β
, t

)
+

1√
β
f1

(
x,

v√
β
, t

)]
dv

= (2 πD β)d/2

[√
β D

2π
exp[−ϕ] 
(x, t) +

√
D

2π
exp[−ϕ] ξ(x, t)

+

(√
ϕ

π
exp[−ϕ] + erfc(

√
ϕ)

2

)(
D∇x
(x, t) · x̂

)]

for x ∈ ∂Brb(0) and x̂ = x/rb. Comparing with (5.5), we find that to leading order,

, and hence u, satisfy the reactive Robin boundary condition for β → ∞,

D∇x
(x, t) · x̂ =
√
β K(ϕ,D) 
(x, t) for x ∈ ∂Brb(0),

where

(5.6) K(ϕ,D) =

√
D

2 π
exp[−ϕ]

1−
√
ϕ

π
exp[−ϕ]− erfc(

√
ϕ)

2

.

As ϕ→ ∞, the denominator of K approaches one. This suggests the scaling

(5.7) ϕ = ln

(
1

K

√
β D

2 π

)
,

so that √
β K(ϕ,D) → K as β → ∞.

We then find that 
(x, t) satisfies the desired Robin boundary condition,

D∇x
(x, t) · x̂ = K 
(x, t) for x ∈ ∂Brb(0),

in the limit β → ∞. More generally, we could impose the equality
√
β K(ϕ,D) = K

in (5.6). Solving for β, we obtain the following relation between ϕ and β:

(5.8) β =
K2

D

(√
2 π exp[ϕ]−

√
2ϕ−

√
π

2
erfc(

√
ϕ) exp[ϕ]

)2

.

In Figure 2(a), we compare both formulas (5.7) and (5.8) forK = D = 1. As expected,
they are equivalent in the limit β → ∞. In the following section, we will present
illustrative simulations, confirming that (5.8) provides a more accurate approximation
of the limiting Robin boundary condition. Further improvements to these formulas
could presumably be made by incorporating a more detailed representation of the
kinetic boundary layer near ∂Brb(0).
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Fig. 2. (a) Dependence of ϕ on β computed by (5.7) (blue solid line) and (5.8) (red dashed
line) for K = D = 1 (color available online). (b) Splitting probability of escaping through the left
boundary as a function β. In each simulation, we estimate the splitting probability as an average
over 105 realizations. We use ε = 10−3, D = L = K = 1, and ϕ computed according to (5.7) (blue
squares) or (5.8) (red circles). The dashed line denotes the theoretical BD result (5.10).

5.1. A numerical example illustrating limit β → ∞. As in section 4.1,
we consider the LD model (1.1) for d = 1 in the interval Ω = [0, L] with the linear
potential (3.3) near the left-hand boundary only. We choose a small time step Δt and
compute the position X(t + Δt) and the velocity V (t + Δt) from the position X(t)
and the velocity V (t) by (4.9)–(4.10). We implement adsorbing boundaries at both
ends x = 0 and x = L of the simulation domain [0, L] by terminating the computed
trajectory whenever X(t) < 0 or X(t) > L.

In this section, we want to show that both (5.7) and (5.8) correctly recover the
Robin boundary condition in the limit β → ∞. In particular, we choose the values of
other parameters equal to 1, namely (compare with (4.11))

(5.9) K = D = L = 1.

We vary β, and we use either (5.7) or (5.8) to calculate the corresponding value of ϕ
(these values are plotted in Figure 2(a)).

For each value of β, we compute 105 trajectories according to (4.9)–(4.10), starting
from the middle of the domain, i.e., X(0) = L/2, with initial velocity V (0) sampled
from the normal distribution with zero mean and variance β D. Each trajectory is
calculated until it leaves the domain [0, L] either through the left or right boundary
point. In Figure 2(b), we plot the probability that a trajectory leaves the domain
Ω through the left boundary (the so-called splitting probability), estimated as the
fraction of all trajectories which are terminated because X(t) < 0.

Our goal is to illustrate that (5.7) and (5.8) can be used to connect the LD model
with the limiting Robin boundary problem (2.9)–(2.10). Let Π(x) be the probability
that the BD particle leaves the domain Ω = [0, L] through the left boundary. Since

d2Π

dx2
(x) = 0 for x ∈ Ω, with D

dΠ

dx
(0) = K (Π(0)− 1) and Π(L) = 0,

we find

Π(x) =
K (L− x)

D +KL
.
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Since all trajectories start from the middle of the domain, X(0) = L/2, we have

(5.10) Π

(
L

2

)
=

K L

2(D +KL)
= 0.25%

for the parameter values given by (5.9). This value is plotted in Figure 2(b) as
the black dashed line. We confirm that the results estimated from simulations ap-
proach (5.10) as β → ∞. We also confirm that simulations based on the higher-order
approximation (5.8) converge more quickly to the limiting Robin boundary problem
than the simulations based on (5.7).

6. Discussion. We have considered three parameters, ε (potential width), ϕ
(potential height), and β (friction constant), and studied several limits of these pa-
rameters which lead to the Robin (reactive) boundary condition (2.10). Parameters
ε and ϕ are shared by both the BD and LD models. In section 3, we have shown
that the BD model can recover the Robin boundary condition in the limit ε → 0
and ϕ → ∞ when these parameters are related by (3.13). For the case of the linear
potential (3.3) this relation can be rewritten as

(6.1) ϕ− ln(ϕ) = ln

(
D

Kε

)
.

The LD model has an additional parameter β. In section 5, we have derived two
formulas (5.7) and (5.8) which relate the LD model to the BD model with the Robin
boundary condition (2.10). Both results, (5.7) and (5.8), are equivalent in the limit
β → ∞. Equation (5.8) is more accurate for finite values of β, while (5.7) is simpler
and easier to interpret. The latter is given as

(6.2) ϕ = ln

(
1

K

√
β D

2 π

)
.

Considering that (experimentally determinable) parameters K and D are given con-
stants, we can compare our BD result (6.1) with our LD result (6.2). They can both
be used to specify the height of the potential barrier ϕ, which is given as a function
of ε in (6.1) and as a function of β in (6.2).

On the face of it, the LD result (6.2) does not depend on the parameter ε. How-
ever, the derivation of the LD result (6.2) is only valid for small ε. More precisely,
our conclusion for the LD model (1.1) can be stated as follows:

(1) If ε 

√

D
β 
 1, then ϕ is independent of ε and can be written in the

form (6.2).

(2) If 1 � ε�
√

D
β , then ϕ is independent of β and is given by (6.1).

In our illustrative computations in Figure 2(b) we have used ε = 10−3. In this case,
the BD result (6.1) implies that ϕ = 9.118. We observe that this value is higher than
the values of ϕ plotted in Figure 2(a) which are used for our simulations in Figure 2(b).
We can also substitute this value ϕ = 9.118 into (6.2). We obtain β = 5.224× 108.
For these values of β and ε we are in case (2), so that the LD result (6.2) would no
longer be applicable. We instead recover the limiting Robin boundary condition (in
the limit β → ∞ with ε = 10−3) by using the BD result (6.1).

The above results (6.1)–(6.2) can be used to connect the experimentally deter-
minable parameters K and D with parameters of computer simulations to design
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reaction-diffusion models based on LD, i.e., to simulate diffusion-limited bimolecu-
lar reactions between Kramers particles. There are also other situations where our
analysis will be applicable. One of them is adsorption to surfaces [15, 17]. Our
setup includes interactions with a reactive surface of a sphere and can be used in
modeling interactions of small molecules with large reactive spheres, for example, for
adsorption of polymers to a surface of a virus [17] or for coating of spherical particles
by reactive polymers [33]. We also expect our results should be easy to extend to
general nonspherical reaction surfaces, assuming sufficient regularity. Another pos-
sible application area is modeling excluded-volume effects. We have observed that
the short-range repulsive interaction potential (2.6) leads to zero Neumann bound-
ary condition (3.14) if ε is chosen to approach zero more slowly than (3.13) (in the
limit ϕ → ∞). A similar potential mechanism has been used to enforce Neumann
boundary conditions on global domain boundaries in [5] and can be used to model
excluded-volume effects in models of intracellular macromolecular crowding [4, 6].

Since LD requires a smaller time step than the overdamped BD model, the nu-
merical simulations are in general more computationally intensive for LD. However,
for many biological applications, the LD model is only required close to a reactive
surface (where we have a nonzero potential). In particular, one could replace the
computationally intensive LD model with the BD model in the part of the compu-
tational domain which is far from the reactive surface [12]. In some applications,
one could further substitute the BD simulation algorithms by even coarser and more
efficient simulation techniques, including lattice-based simulations [11, 19] or even
mean-field equations [15, 20]. In this way, one could design LD simulation meth-
ods which simulate intracellular processes on time scales comparable to those of the
BD simulation packages which are available in the literature [3, 30, 34]. In some
applications, one could also design an efficient first-passage-time scheme by replacing
discretization (4.9)–(4.10) (which uses fixed time step Δt) by estimating the next time
when a Kramers particle becomes sufficiently close to the reactive target [21]. Similar
approaches have been used to accelerate BD simulations in the literature [27, 28, 35].

Appendix A. A simple example illustrating how specular reflection
arises in a classical mechanical system. In this section we illustrate with a simple
example how the specular reflection boundary condition (4.7) arises in a classical
mechanical system in the absence of noise.

We consider the simple case of a particle moving in the infinite one-dimensional
potential,

kBTϕ(x) =

{
−kBTϕ

ε x, x ≤ 0,

0, x > 0,

and experiencing friction, with friction constant β. Note, for the purposes of this
section we only make use of the value of the potential for x ∈ (−∞, 0]. Newton’s
equation when the particle’s position, X(t), satisfies X(t) ≤ 0 with negative velocity
is then

m
dV

dt
= −mβV +

kBTϕ

ε
.

Using the Einstein relation, this reduces to

dV

dt
= −βV +

Dβϕ

ε
,
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the one-dimensional analogue of the LD model (1.1) with the noise term neglected.
We consider the initial conditions

V (0) = v0 < 0, X(0) = 0,

and ask for what initial velocity range the molecule successfully moves a distance ε
to the left before changing direction and falling down the potential gradient. This
is consistent with a molecule reaching the reactive boundary in the Kramers equa-
tion model (2.7). Given the molecule’s negative initial velocity, until the molecule’s
direction of motion reverses and the molecule moves back across the origin, we find

V (t) =

(
v0 − Dϕ

ε

)
exp [−βt] + Dϕ

ε
.

The velocity then becomes zero at time

t∗ =
1

β
ln (1− α) ,

where

α =
εv0
Dϕ

< 0.

At this time, the molecule’s position is

X(t∗) =
1

β

(
v0 − Dϕ

ε

)
(1− exp [−βt∗]) + Dϕt∗

ε

=
Dϕ

εβ
(α− ln(1− α)) .

The molecule then successfully travels farther than −ε, analogous to penetrating the
“reactive boundary” at x = −ε, if

X(t∗) < −ε

or, equivalently,

Dϕ

εβ
(α− ln(1− α)) < −ε.

As ε→ 0,

X(t∗) ∼ −εv20
2ϕβD

.

We therefore find that the molecule successfully penetrates the reactive boundary in
the limit that ε→ 0 if and only if

v0 < −
√
2ϕβD,

consistent with the specular reflection boundary condition (4.7).
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