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Abstract:

Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However,
viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we
use a new mechanistic model of bivalent binding to study >45 patient-isolated IgG1 antibodies inter-
acting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics
and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling
bivalent binding. We find large variations in these parameters across antibodies, including reach vari-
ations (22-46 nm) that exceed the physical antibody size (∼15 nm). By using antigens of different
physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen
sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with
molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies bind-
ing with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding
the same antigen can display differences in molecular reach, substantially modulating their binding and
functional properties.

Lay Summary:

Antibodies are soluble proteins that can neutralise pathogens by sticking to them. They contain two
identical ‘arms’ that allow them to simultaneously bind two identical ‘antigen’ molecules on pathogen
surfaces. Although we know that bivalent binding is important for neutralisation, we don’t know how
different antibodies achieve it. We developed a new model to analyse the mechanism of bivalent binding
and used it to study over 45 antibodies from COVID-19 patients that bind the RBD antigen of SARS-
CoV-2. Unexpectedly, we found that the molecular reach of an antibody, which is the maximum antigen
separation that supports bivalent binding, varied widely between antibodies and exceeded their physical
size. We show how antibody binding emerges from the interplay of multiple factors, including reach,
and that this emergent binding predicts their neutralisation function. The ability to analyse and predict
bivalent binding should improve our understanding and exploitation of antibodies.

Graphical abstract:
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Introduction
Antibodies are multivalent molecules that contribute to immune responses by binding their antigens on the
surfaces of pathogens. IgG antibodies usually have two identical antigen binding fragments (Fabs) fused
to a constant fragment (Fc). These Fabs enable antibodies to achieve high-affinity bivalent binding by
simultaneously engaging two antigens. This is important because the monovalent Fab/antigen interaction is
often too weak to be effective and indeed, bivalent antibodies are much more effective than monovalent Fabs
at neutralising pathogens (1–5). Although bivalent binding is important, we presently lack an understanding
of the factors that influence it.

The ability of antibodies to bind an antigen surface depends on several factors. First, the monovalent
on/off-rates determine initial antibody/antigen complex formation. Next, the antibody/antigen complex can
bind a second antigen when it is within the molecular reach, which is the maximum antigen separation that
supports bivalent binding. The rate of this second reaction is heavily influenced by the antigen density (6–8).
When an antibody unbinds from one antigen, it can rebind the same or different antigen provided it is within
reach and provided the epitope is not bound by another antibody. Although methods to analyse multivalent
antibody/antigen interactions are available when both are in solution (9), we lack methods to analyse binding
to surface-anchored antigen.

Existing methods to study antibody/antigen interactions have focused on isolating individual factors that
contribute to overall binding. To determine monovalent kinetics, soluble monovalent antigen is injected
over immobilised antibodies in surface plasmon resonance (SPR). A simple ordinary differential equation
(ODE)-based binding model is fit to the monovalent SPR binding traces to determine the binding kinetics
(kon, koff) and dissociation constant (KD) (10). However, monovalent parameters provide an incomplete an
understanding of antibody function (1). While more physiological experiments can readily be performed by
injecting antibodies over randomly-coupled surface antigens (‘Bivalent SPR’), we lack methods to analyse
the complex binding that results. To reduce this complexity and isolate the effect of reach, soluble anti-
bodies can be injected over precisely spaced model antigens (11–13). By measuring an apparent KD for
different spacing, it has been estimated that antibodies can only bind antigen when spaced within ∼16 nm,
which is consistent with atomic force microscopy and structural studies (14). However, we presently lack
measurements of reach using physiological antigens making it difficult to know whether reach can predict
antibody function. By removing the dependency on antigen density, current methods that isolate individual
factors are unable to predict overall binding and hence the functional impact of antibodies in vivo, such as
their ability to bind viral surface antigens at defined densities.

Here, we develop a method to mechanistically analyse bivalent SPR binding traces generated by soluble
antibodies binding surface antigen. The method fits bivalent SPR data yielding accurate estimates of the
monovalent binding parameters (kon, koff, KD) and two additional biophysical parameters: the bivalent on-
rate (kon,b) and the molecular reach. Using this method, we investigate how multiple factors contribute to
overall bivalent binding of patient-isolated antibodies specific for the receptor-binding-domain (RBD) of
SARS-CoV-2.

3



Huhn et al

Results
A particle-based model accurately fits bivalent SPR data highlighting the impact of molecu-
lar reach on antibody binding

We first used SPR to study the monovalent interaction between the IgG1 FD-11A antibody and RBD (15)
(Fig. 1A, left). This standard method proceeds by injection of different concentrations of monovalent RBD
over a surface immobilised with FD-11A. A monovalent ODE-based model is simultaneously fit to the entire
monovalent SPR data set, providing estimates of the kon, koff, and KD (Fig. 1B-left,C). We next reversed the
orientation to study the bivalent interaction by injecting FD-11A at different concentrations over an RBD
surface (Fig. 1A, Bivalent SPR). Standard SPR fitting software includes an ODE-based bivalent model that
can seemingly fit bivalent SPR data (Fig. 1B, middle). This model adds a second bivalent binding step with a
bivalent on-rate (kon,b) and the same koff. While the fit was not unreasonable, this model provides inaccurate
koff and KD values that significantly differ from those produced by monovalent SPR, which is likely the
reason it is seldom used (Fig. 1C).

A key assumption of the ODE-based bivalent model is that the molecules involved are ‘well-mixed’.
While this assumption is often used for chemical reactions in solution and it is reasonable for the first
antibody/antigen binding step, it becomes unreasonable for the second step: once the antibody is bound to
a surface immobilised antigen, the monovalent antibody/antigen complex can only bind a second antigen
within reach whereas the well-mixed condition of the model assumes it can bind any free antigen on the
surface. Moreover, the number of free antigens within reach is expected to be low and to decrease over time
as more antibody binds. As a result, deterministic ODE models also fail to capture the local stochasticity of
bivalent binding.

To address these limitations, we developed a more realistic stochastic and spatially resolved particle-
based model of bivalent antibodies interacting with a random distribution of antigens (’particles’) using the
Gillespie method (16, 17) (Fig. 1A, right). In this model, once antibodies bind to a surface antigen with
the usual monovalent kinetics, the antibody/antigen complex can only bind a second antigen if it is within
reach (with rate kon,b per antigen within reach). If multiple antigens are within reach, when an antibody
unbinds one antigen it can re-bind another enabling antibodies to migrate on the surface. We used the model
to simulate bivalent SPR traces to surfaces with the same (random) distribution of antigen but with three
different reach distances (Fig. 1D). With a very short reach, antibodies could not bind a second antigen,
resulting in monovalent binding with fast dissociation whereas increasing the reach allowed a larger fraction
of antibodies to engage in bivalent binding, leading to much slower dissociation. This highlights the crucial
role of molecular reach in determining antibody binding stability.

We developed a workflow to rapidly fit the particle-based model directly to bivalent SPR data (Fig. S1).
This produced an excellent fit (Fig. 1B - right) and, unlike the ODE-based bivalent model, yielded kon, koff
and KD values in agreement with those obtained by monovalent SPR (Fig. 1C). Importantly, the model fit
provided estimates of the bivalent on-rate and reach (Fig. 1E). We found the same binding parameters when
analysing bivalent SPR with different levels of RBD on the chip surface, which confirms that the particle-
model is correctly capturing how the antigen density impacts bivalent antibody binding (Fig. S2).

To further validate the model, we performed monovalent and bivalent SPR on four additional RBD
antibodies (Fig. S3). We confirmed that the particle-model correctly estimated the values of kon, koff, and
KD across the 100-fold variation in affinity within these antibodies (Fig. 1F). As before, the particle model
also provided estimates of the bivalent on-rate and the reach (Fig. 1G).
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Figure 1: A particle-based model for bivalent binding quantifies the impact of molecular reach and accurately
analyses bivalent SPR traces. (A) Schematic of the chemical reactions in models describing monovalent and bivalent
SPR. The ODE-based and particle-based bivalent models assume that any free antigen on the surface or only free
antigen within reach, respectively, can be bound by an antibody already bound to the surface with one arm (grey
shaded regions). (B) Representative monovalent (left) or bivalent (middle, right) SPR traces using the antibody FD-
11A interacting with RBD of SARs-CoV-2. The family of SPR traces are generated by 2-fold dilution of RBD starting
at 2000 nM (left) or by a 2-fold dilution of FD-11A starting at 300 nM (middle, right - same data but different model
fit). (C) The fitted binding parameters for monovalent (N = 4) and bivalent (N = 6) SPR experiments. (D) Simulated
SPR traces (bottom) for antibodies injected over a surface with a random distribution of antigen (top) but with different
values of reach. Antigens (circles) are coloured red if they are within reach of another antigen and blue otherwise.
Parameter values: kon = 0.05µM−1s−1, koff = 0.05s−1, kon,b = 1.0s−1, and [RBD] = 0.0025 nm−2. (E) The fitted
bivalent binding parameters from the N = 6 bivalent SPR experiments. (F,G) Comparison of five antibodies analysed
using monovalent and bivalent SPR from N ≥ 3 independent experiments. (F) Comparison of the indicated parameter
using both methods with the dashed line displaying perfect agreement (y=x). (G) The bivalent binding parameters. An
F-test was used to determine a p-value for the null hypothesis that the dashed line and the fitted line to log-transformed
binding parameters were equal (F) and a t-test with Dunnett’s multiple comparison correction on log-transformed
values was used to determine p-values (C). Abbreviations: ns = p> 0.05, * = p≤0.05, ** = p≤0.01, *** = p≤0.001,
**** = p≤0.0001.

5



Huhn et al

Finally, we repeated the analysis with an antibody that recognises a different antigen, namely CD19.
Once again we found agreement between the ODE-based model analysing standard monovalent SPR and
the particle-based model analysing bivalent SPR (Fig. S4).

In conclusion, a particle-based model accurately fits bivalent SPR data and allows measurement of
binding parameters crucial for understanding bivalent antibody binding.

The molecular reach is determined by both the antibody and the antigen

The molecular reach distances that our analysis produced for the five RBD antibodies (∼38 nm, Fig. 1G) and
the CD19 antibody (53 nm, Fig. S4) were notably larger than previous studies reporting that IgG1 antibodies
can only bind bivalently when antigens were within ∼16 nm (11, 12, 14). They were also larger than esti-
mates of the distance between the antigen-binding sites based on structural studies of whole antibodies (∼15
nm) (1). Furthermore, molecular dynamic (MD) simulations of the FD-11A antibody produced reaches of
3.46 to 17.58 nm with a mean of 13.05 nm (Fig. S5).

One possible explanation for these discrepancies is antigen size. Previous studies of molecular reach
had used small model antigens (e.g. 4-hydroxy-3-iodo-5-nitrophenylacetate (NIP, 320 Da) (11), digoxin
(780 Da) (14), 6x His-Tag (1100 Da) (12)) while we used much larger protein antigens (RBD is 51,100
Da). To test this hypothesis, we injected an anti-phosphotyrosine antibody over a small phosphorylated
peptide antigen coupled to polyethylene glycol (PEG) linkers comprised of 3 or 28 PEG repeats with a size
of 2234 Da and 3336 Da, respectively (Fig. 2A,B, Fig. S6). Consistent with previous measurements using
small antigens, our analysis produced a reach of 10.3 nm using the PEG3 linker and 13.4 nm using the
PEG28 linker (Fig. 2B). Similar results were obtained at different PEG3 concentrations (Fig. S7). Using a
polymer model, we calculated the theoretical increase in molecular reach between PEG3 and PEG28 to find
agreement with the experimentally measured increase (Fig. 2C).
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Figure 2: The molecular reach is similar to the predicted antibody reach when the antigen is small. (A) Repre-
sentative SPR traces of the anti-phosphotyrosine antibody (PY20) injected over surfaces coupled to a small phospho-
rylated peptide linked to either 3 or 28 repeats of PEG. The antibody was injected at 8 concentrations (25 nM with
2-fold dilutions). (B) The fitted molecular reach (N = 9 for PEG3, N = 5 for PEG28; see Fig S6 for other fitted
parameters). (C) Comparison of the difference in reach between PEG3 and PEG28 estimated by the worm-like-chain
polymer model (see Methods) and by experiments from panel B.

To determine if a ∼38 nm reach was plausible for RBD binding antibodies, we used coarse-grained
steered MD simulations. A coarse-grained representation of the FD-11A antibody bound to RBD was
constructed, modified to include the Lys15 biotinylation site used to anchor RBD to the SPR chip surface
(Fig. 3A). One Lys15 position was held fixed while the other was pulled away at constant velocity. We
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computed the fraction of native contacts at both paratope/epitope interfaces (Fig. 3B) and the exerted pulling
force (Fig. 3C). Unbinding events were identified based on a decrease in the fraction of native contacts and
this could be confirmed by visual inspection (Fig. 3D). At these events, the maximum distance between
Lys15 on the two RBDs before the antibody unbound were recorded. This steered MD procedure allowed
us to much more rapidly access extended conformations where FD-11A remained bound to both RBDs
at large separation distances. In contrast, unrestrained simulations initialised at these separation distances
would rarely access these extended conformations, which we expect are readily accessed in experiments that
take place on the timescale of minutes.

We ran sets of simulations using different paratope/epitope interface strengths and as expected, increas-
ing the strength allowed the simulation to explore bivalent binding conformations with a larger maximum
RBD distance (Fig. 3E). Defining the molecular reach as the maximum distance achieved over different in-
terface strengths, we obtained a value of 34.4 nm for FD-11A, which agrees well with the 34.9 nm reach
estimated by bivalent SPR (Fig. 1E). We next repeated this procedure for the other antibodies we already
characterised and an additional therapeutic antibody (REGN10987, Fig. S8) finding agreement with the
SPR-determined reach (Fig. 3F).

Together, these findings demonstrate that our particle-based model provides accurate estimates of the
molecular reach from bivalent binding data and that reach is the maximum separation distance between
antigen anchoring points that support bivalent binding. Thus, the physical size of the antibody and the
antigen contributes to the molecular reach.

We next examined the impact of antibody isotype on molecular reach. A previous study found that IgG1-
4 sub-classes can tolerate a similar maximum antigen separation of ∼16 nm (11), with a longer tolerance
for IgM, which may result from its multimeric structure (11). A study has suggested that IgA antibodies
are more potent than IgG antibodies at neutralising SARS-CoV-2 (18), raising the possibility that the IgA
hinge may display different bivalent binding properties to IgG. To investigate this, we produced the FD-11A
antibody as monomeric IgA and performed bivalent SPR on RBD surfaces. Interestingly, all binding pa-
rameters, including molecular reach, were similar between IgA and IgG1 FD-11A (Fig. S9). Taken together
with previous work, this suggests that the antibody isotype does not appreciably impact the molecular reach
or other antibody parameters in their monomeric form.

7



Huhn et al

a

e f

RBD

FD11A

RBD

1 nm/ns
Fixed 
Lys15

0 5 10 15 20 25 30 35
-250

-125

0

125

250

Simulation time (ns)

 F
 (p

N
)

MD

SPR

EY6A
FD-5D
FD-11A
CR3022
FI-3A
REGN10987

Antibody clone

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

Ab
so

lu
te

 d
iff

er
en

ce
 

(S
PR

 - 
M

D
) (

nm
)

P = 0.9840

d

b c

Moved
Lys15

Interface 1 Interface 2

0 5 10 15 20 25 30 35
0.0

0.5

1.0

Simulation time (ns)

Fr
ac

tio
n 

of
 N

at
iv

e 
C

on
ta

ct
s,

 Q

2
1

Interface

1.5 ns
23.9 nm

3.7 ns
26.2 nm

7.5 ns
30.1 nm

11.8 ns
34.4 nm

15.0 ns
Unbound

1.0 1.5 2.0 2.5
20

25

30

35

40

 for epitope | paratope interfaces

M
ax

im
um

 L
ys

15
-L

ys
15

 
R

BD
 d

is
ta

nc
e 

(n
m

)

FD
-1

1A

FD
-5

D

C
R

30
22

FI
-3

A

R
E

G
N

10
98

7

E
Y

6A

0

10

20

30

40

50

M
ol

ec
ul

ar
 re

ac
h 

(n
m

)

Antibody clone

Molecular Reach

Time:
Distance: 

Figure 3: Molecular dynamic simulations reproduce the molecular reach obtained by bivalent SPR highlighting
the contribution of the antigen to reach. (A) Coarse-grained structure of IgG1 FD-11A bound to two RBD antigens
indicating the Lys15 biotinylation site (within an N-terminus AviTag), which anchors RBD to the SPR surface. The
anchor point of RBD forming interface 1 was fixed while the one forming interface 2 was moved at a constant velocity.
B The fraction of native contacts at the indicated interface (normalised to the number of contacts in the native structure)
and (C) the force in the pulling direction exerted by the steering restraint (i.e. constant velocity over time). (D)
Snapshots from the simulations at the indicated time points indicating the distance between Lys15 on each RBD. The
maximum distance in this trajectory was 34.4 nm. (E) The maximum Lys15-Lys15 distance from N = 50 independent
trajectories over the interface binding strength (η). The molecular reach is defined as the largest distance (horizontal
dashed line). (F) The molecular reach for the indicated antibody estimated by simulation or experiment (left) and the
difference between these estimates (right). A one-sample t-test is used to determine the p-value for the null hypothesis
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The molecular reach of patient-isolated RBD-specific antibodies is the best correlate of SARS-
CoV-2 neutralisation potency

We next investigated the functional implications of molecular reach using a panel of 80 RBD-specific IgG1
mAbs previously isolated from SARS-CoV-2 infected individuals with known epitopes and viral neutrali-
sation potencies (5) (Fig. 4A). The neutralisation potency is the antibody concentration required to produce
50% inhibition of infection (IC50). We injected 3 concentrations of each antibody sequentially, analysing
up to 32 antibodies in a single 48 hour experiment (Fig. 4B). A high salt injection (3M MgCl) was used
to regenerate the surface between antibody injections. In a pre-screen, 7 out of 80 antibodies remained
bound after regeneration, and so were excluded from subsequent experiments. The FD-11A antibody was
injected at the start and end of each of the 16 experiments that we performed to confirm that the antibody
binding capacity of the surface remained largely intact over 48 hours despite multiple regeneration steps
(Fig. S10A,B).
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We next fitted the particle-based bivalent model and the ODE-based monovalent model to the bivalent
SPR data. We excluded 12 antibodies because they produced a poor fit to the particle-based model and
16 antibodies because the ODE-based model produced an accurate fit (Fig. S10C-G). We reasoned that an
accurate fit by the ODE-based model meant that the bivalent SPR data contained no useful information
about bivalent binding parameters. Possible explanations include an antibody that only binds monovalently
because of insufficient reach or an antibody that binds with very high affinity so that it does not unbind
during the experiment. In these cases, it is not possible to quantify the increase in binding that bivalency
provides.

The binding parameters for the remaining 45 antibodies displayed a 1000-fold variation in affinity
(Fig. 4C), which was primarily the result of variations in the off-rate (Fig. 4D). Interestingly, the molecular
reach exhibited large variations from 22 to 46 nm even though all antibodies shared the same IgG1 isotype
and interacted with the same RBD antigen (Fig. 4D). The reach displayed some correlation with affinity
and off-rate (Fig. 4D), which is consistent with previous work suggesting that higher-affinity antibodies can
tolerate larger antigen distances when binding bivalently (11).

We found only modest correlations between neutralisation potency and the monovalent binding parame-
ters (Fig. 5A-C). Given that binding parameters may independently contribute to predicting potency, we tried
multiple linear regression, but the correlation was similar to the affinity alone (Fig. 5C vs D). Examining the
additional bivalent parameters revealed no correlation with the bivalent on-rate (Fig. 5E) but the molecular
reach displayed the best correlation of all single binding parameters (Fig. 5F). This increased further using
a multiple linear regression model that included all the parameters (Fig. 5G). Together, this indicates that
antibodies with a longer reach are better able to neutralise virus.

We reasoned that the ability of reach to predict neutralisation may be a result of it’s ability to predict
bivalent binding and/or it’s ability to act as a proxy for the relevant blocking epitope. To test the latter, we
computed the distance of each antibody epitope from a reference epitope in the ACE2 binding site (Fig. 5H).
The approximate epitope location of these antibodies was previously determined using a competition assay
and computational modelling (5). As expected, we found that neutralisation potency was gradually reduced
for antibodies that bound further from the blocking epitope interface (Fig. 5I). However, we found that the
molecular reach did not correlate with this blocking epitope distance (Fig. 5J). We also used a previously
reported epitope taxonomy but again, found no difference in molecular reach depending on epitope location
(Fig. S11). This suggested that molecular reach predicts bivalent binding rather than the blocking epitope.

The observation that both epitope distance and reach correlated with neutralisation potency but not with
each other suggested that each contained independent information relevant to viral neutralisation potency.
We first confirmed that including the blocking epitope distance with the monovalent binding parameters
improved the correlation (Fig. 5D vs K). In support of our hypothesis, we found that the correlation with all
the binding parameters improved further when including the blocking epitope distance (Fig. 5G vs L).

Taken together, these results show that the best single parameter predictor of neutralisation potency is
the molecular reach, and that increasing the molecular reach increases the neutralisation potency of RBD
antibodies by enhancing bivalent binding.
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The binding potency of antibodies predicted by the particle-model matches their neutralisa-
tion potency at antigen densities found on the virion

The neutralisation potency of an antibody emerges from multiple factors including its binding parameters
(kon, koff, kon,b, reach), the epitope, and the antigen density on the pathogen surface. We reasoned that the
particle-model could incorporate all of these factors to directly calculate an overall measure of antibody
binding potency. To do this, we developed a workflow that used the particle-model to simulate the amount
of free antigen on a two-dimensional surface for different antibody concentrations from which the predicted
binding potency (antibody concentration required to bind 50% of antigen) can be calculated (Fig. 6A).

We first used the FD-11A antibody to validate the workflow. We simulated the amount of free antigen
at 60 minutes using the FD-11A binding parameters (Fig. 1C,E) for different FD-11A concentrations and
for surfaces with 7 antigen densities (Fig. 6B). To compare these simulations with data, we mixed different
concentrations of FD-11A IgG or Fab with live SARS-CoV-2 for 60 minutes before adding it to Vero cells
and determined infection at 20 hours (15) (Fig. 6C). We compared the predicted binding potency with the
experimental neutralisation potency (Fig. 6D).

At the lowest antigen densities, the model predicted a poor binding potency of ≈600 nM that matched
the expected affinity of a bivalent antibody that can only bind a single antigen (KD/2 = 614 nM, where the
factor of 2 accounts for the two antibody Fabs and KD = 1228 nM is the monovalent affinity). This is because
the average distance between antigens at this density (312±163 nm) is much larger than the molecular reach
of FD-11A (34.9 nm) impairing bivalent binding. The predicted binding potency improved by > 100-fold as
the antigen density increased enabling FD-11A to bind bivalently and eventually reaching the experimental
potency. The Fab failed to neutralise virus even at concentrations above 3000 nM, which likely reflects the
fact that the monovalent antibody/RBD affinity is much lower than the ACE2/RBD affinity (KD ∼75 nM
(19)).

We next used the workflow to predict binding potency at different antigen concentrations for all 45
antibodies. The predicted and experimental potencies were similar at intermediate antigen densities of
0.0005-0.001 nm−2 (Fig. S12) and this could be further improved if only a subset of 24 antibodies were
included that bound near the blocking epitope (Fig. 6E). At very low or very high antigen densities the
predicted IC50 was heavily over-estimated for potent antibodies or heavily under-estimated for low potency
antibodies, respectively (Fig. 6E - left & centre panels). At these extreme densities, the molecular reach
of each antibody is irrelevant for the model predictions. At the low densities, the antigens are spaced so
far apart (312±163 nm) that even antibodies with the longest reach fail to achieve bivalent binding, under-
estimating their predicted potency. Conversely, at the very high densities the antigens are spaced so close
(2.5 ± 1.3 nm) that even antibodies with the shortest reach achieve bivalent binding, over-estimating their
predicted potency. At intermediate densities (∼0.0005 nm−2) corresponding to a mean antigen spacing of
22±11 nm, efficient bivalent binding is achieved only by the subset of antibodies with longer reaches and it
is at these intermediate densities that the predicted binding potency matches the experimental neutralisation
potency (Fig. 6E, right panel). Importantly, these intermediate densities are similar to the estimated density
of the Spike protein on the surface of SARS-CoV-2 (Fig. 6F).
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Finally, we wondered if the predicted binding potency can explain discrepancies in neutralisation po-
tency based on monovalent binding and epitope location. We identified two antibodies in our dataset that
displayed large differences in neutralisation potency despite binding with similar monovalent affinities to
the same RBD-epitope (Fig. 7A). Given that these antibodies also displayed differences in their bivalent
binding parameters, we calculated their binding potency at different antigen densities finding that the model
correctly differentiated between them only at intermediate densities found on the virion (Fig. 7B,C). There-
fore, antibodies with a similar affinity to the same epitope can display large differences in function because
of differences in their molecular reach, and hence propensity for bivalent binding.

Together, these results underline the importance of molecular reach and the antigen density/spacing in
determining bivalent binding and hence antibody function.
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Discussion

The challenge of studying antibody binding has motivated experimental methods to isolate individual fac-
tors that contribute to antibody binding. Experimental methods are routinely used to study monovalent
antibody/antigen kinetics and methods are now available to measure reach for precisely spaced model anti-
gens (11–13). Although mathematical methods are available to study bivalent binding in certain limits, such
as soluble antibody/antigen interactions, a method for analysing antibody binding to a random distribution
of anchored antigen is presently unavailable (7, 9, 21, 22). Here, we developed a fast spatial and stochastic
particle-based method to directly fit antibody binding to random antigens at any density enabling estimates
of monovalent kinetics/affinity, the bivalent on-rate, and the molecular reach.

We validated the particle-based model in several ways. First, the model correctly identifies the monova-
lent kinetics and affinities for several antibodies across a large variation in affinity using two antigens: RBD
(Fig. 1) and CD19 (Fig. S4). Second, the model identifies the same parameter values at different antigen
densities on the SPR surface (Fig. S2, Fig. S7), highlighting that it can accurately capture how antibody
binding depends on antigen density. Lastly, MD simulations reproduce the fitted molecular reach values
obtained by bivalent SPR (Fig. 3).

By analysing a large number of SARS-CoV-2 RBD-specific antibodies, we found that the molecular
reach (up to 46 nm) is much larger than previous reports (up to ∼16 nm) (11, 12, 14). We have shown
this to be the result of differences in antigen sizes, with previous reports focused on low molecular weight
model antigens (<1100 Da) compared to the the RBD antigen we have used (51 kDa). This suggests that
antibodies can simultaneously bind two antigens anchored much further apart than the physical size of an
antibody provided that the antigen is large and can display tilting flexibility relative to the surface, which is
the case for surface RBD/Spike (20) (Fig. 8). Moreover, the large variation in reach across antibodies with
the same IgG1 isotype that we report (22-46 nm) implies that a universal reach value is unlikely and that
this critical parameter will need to be assessed for each antibody/antigen combination. The importance of
the molecular reach is underlined by the observation that it was the best single-parameter predictor of viral
neutralisation, with a correlation larger than the monovalent binding parameters and the blocking epitope.
This is consistent with molecular reach being a proxy for bivalent binding, which itself is known to be
important for SARS-CoV-2 neutralisation (3, 5).

Reach ≈ Antibody + AntigenReach ≈ Antibody

Flexible AntigenRigid Antigen

Figure 8: The molecular reach is expected to exceed the antibody reach when the antigen contains
flexible elements (e.g. hinge flexibility).

Previous work has shown that the maximum antigen separation that can be tolerated by monomeric
IgM, IgE, and different IgG sub-classes binding to a model antigen is similar (∼16 nm) (11, 13) and we
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have shown here that IgG1 and IgA have similar reaches. While these results suggest that different anti-
body isotypes have the same maximum reach, they may differ in their minimum reach (minimum antigen
separation distance), as previously suggested (11). Antibody isotype does affect the binding strength of the
overall antibody binding to multivalent antigen, also termed antibody avidity (23). The major mechanism
for this is isotype-dependent differences in valency, with IgM antibodies having 10-12 antigen binding sites,
IgA having 2-4, and IgD, IgE and IgG typically having 2 (23). Interestingly, IgG4 has been shown to be-
come monovalent and bi-specific after secretion as a result of antibody arm exchange through labile hinge
disulphide bonds (24).

A unique feature of our analysis is that the complete set of binding parameters can be used to quantita-
tively predict antibody binding. This enables estimates of the antibody concentration required to bind 50%
antigen on surfaces with different antigen densities. Interestingly, the predicted binding and experimental
neutralisation potencies matched only when using the antigen density of Spike on the surface of SARS-CoV-
2 in our simulations. At this density, the mean distance between antigens overlapped with the measured
molecular reaches. A limitation of our method is that these calculations relied on monomeric antigen but
the Spike protein is trimeric and contains three RBDs that are closer together than the molecular reaches
that we report. This apparent discrepancy can be accounted for if the predominate mechanism of bivalent
binding involves two RBDs on different Spike trimers. Although there is evidence that some antibodies
can bind two RBDs within a Spike trimer (4, 25), a Spike trimer typically contains only a single accessible
RBD (20) and the lifetime of antibodies depends on the Spike concentration implying inter-Spike binding
(18). Moreover, directly resolving antibody/Spike binding revealed Spike cross-linking (26). Therefore, our
results are consistent with the present antibodies predominately binding RBD across Spike trimers.

While we have shown that the molecular reach of RBD antibodies is crucially important for neutrali-
sation of SARS-CoV-2, it remains to be shown whether this applies to other viruses. Molecular reach is
most likely to be important when antibody is limiting and/or monovalent binding affinity is low. In contrast,
reach will likely be less important when monovalent affinity is high and/or when antibody is not limiting,
such as antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, or antibody-mediated
complement activation (23). In addition, the molecular reach may be less important when the antigen den-
sity and/or mobility is high. While antigen density is easily and frequently measured, it is more difficult
to measure antigen mobility, especially on viral surfaces. Importantly, a longer reach may reduce bivalent
binding if the free antibody arm explores a larger volume away from the antigen, analogous to the impact of
reach on membrane-confined enzymatic reactions (27).

Our findings have implications for vaccine design and assessment of the induced antibodies. A key
objective of vaccination is to induce neutralising antibodies (28). When bivalent binding to the pathogen
surface is required for neutralisation, optimally designed vaccines may need to reproduce antigen size, flex-
ibility, and spacing on the pathogen surface (29–32). Furthermore, assessment of the quality of infection-
or vaccine-induced antibodies could include an analysis of bivalent binding, including assessment of the
molecular reach, as this information can then be used to quantify the ability of antibodies to neutralise the
virus and hence identify the level of protection achieved within the individual. Thus, we suggest that im-
provements in vaccine design and assessment can be achieved by analysis of bivalent binding of antibodies.

In conclusion, we provide a validated method to analyse bivalent SPR data and to predict antibody
binding to antigen surfaces at any density. Although we have focused on using SPR, the method can be
used to analyse any bivalent molecule using any instrument that measures binding. While existing methods
have largely focused on studying and optimising the monovalent paratope/epitope interface, our method
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now provides the ability to easily analyse and predict bivalent binding. This should improve the ability to
study and engineer antibodies and other native and synthetic bivalent molecules.
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Materials & Methods

Proteins

Production of monovalent Streptavidin. Monovalent Streptavidin was produced using a method previ-
ously described to generate streptavidin tetramers of defined valency fused to Spycatcher (33). Two dif-
ferent streptavidin subunits were used: Streptavidin-SpyCatcher, which contains a functional streptavidin
monomer fused to SpyCatcher at its C terminus and a ’dead’ streptavidin, which contains a mutation in the
streptavidin monomer that has negligible biotin-binding activity. Individual subunits were expressed in E.
coli BL21-CodonPlus (DE3)-RIPL cells and refolded from inclusion bodies. Inclusion bodies were washed
in BugBuster (Merck Millipore 70921) supplemented with lysozyme, protease inhibitors, DNase I, and mag-
nesium sulphate as per the manufacturers’ instructions. To obtain monovalent streptavidin-SpyCatcher, the
subunits were mixed at a 3:1 molar ratio of dead streptavidin to streptavidin-SpyCatcher. Tetramers were
refolded by rapid dilution and precipitated using ammonium sulphate precipitation. Precipitated protein was
resuspended in 20 mM Tris (pH 8.0), filtered (0.22-µm filter), and loaded onto a Mono Q HR 5/5 column
(GE Healthcare Life Sciences). Desired tetramers were eluted using a linear gradient of 0–0.5 M NaCl in
20 mM Tris (pH 8.0), concentrated, and buffer exchanged into 20 mM MES, 140 mM NaCl (pH 6.0).

Production of Biotinylated-RBD. Affinity purified SARS-CoV-2 (Wuhan) RBD was biotinylated using
EZ-Link Sulfo-NHS-LC-biotin (Life Technologies, USA, A39257) accordingly to manufacturing protocol.
Biotinylated RBD was subjected to Zeba™ Spin Desalting Columns (7k MWCO) (Thermo Scientific, USA,
catalogue 89889) to remove excess biotin.

Production of FD-11A, FD-5D, EY-6A, FI-3A, CR3022, REGN10987 antibodies. Monoclonal an-
tibodies were produced as previously described (15, 34). Expression plasmids were transfected into the
ExpiCHO cell lines according to the manufacturer’s protocol (Thermo Fisher). Supernatant containing
monoclonal antibodies were clarified by centrifugation (1,400g, 5min) and 0.45 µM filtered before purifi-
cation. Monoclonal antibodies were affinity purified using a MabSelect SuRe (Cytiva) pre-packed column.
Purified mAbs were then desalted using Zeba Spin Desalting Column (ThermoFisher) or diafiltered using a
Amicon Untracentrifugation Column (50k MWCO).

To produce IgA from IgG1 FD-11A, the sequence encoding the VH region of the FD-11A antibody
was fused to the human IgA1 Constant region on a pCDNA3.1 backbone. The light chain sequence of
FD-11A IgA1 and IgG are identical. The plasmids encoding the FD-11A IgA heavy chain and light chain
were co-transfected into Expi293 cells according to the manufacturer’s instructions. FD-11A IgA1 was
affinity purified using Peptide M agarose (InvivoGen) according to the manufacturer’s instructions. The
FD-11A IgA1 was diafiltered into PBS using a 100k MWCO Amicon filter and purified using size exclusion
chromatography.

Production of 80 mAbs specific for RBD. Antibodies for high-throughput screen used in the present
study were produced previously (5). All antibodies contain the human IgG1 backbone paired with either κ
or λ light chains.

Production of Spytag-CD19 antigen and antibody. Spytag-CD19 fused to Spytag was produced as
previously described (35). The extracellular domain of CD19 is expressed as a fusion protein with Spytag
and Histag fused to its C-terminus, and the Sumo protein via a HRV cleavage site fused to its N-terminus
(Sumo-HRV-CD19-Spytag-Histag). The protein SUMO was used to stabilise Spytag-CD19 during produc-
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tion. A CMV expression plasmid encoding Sumo-HRV-CD19-Spytag-Histag was transfected into Expi293F
Cells (ThermoFisher) using the ExpiFectamine 293 Transfection Kit (ThermoFisher Scientific, A14524).
Cells were incubated for 4-5 days for protein expression. Following, the supernatant was harvested, and
in the first step the fusion protein was purified using Ni-NTA Agarose column. Next, the protein was con-
centrated and loaded onto a Superdex 200 10/300 GL (Cytiva, 17-5175-01) size exclusion chromatography
column. Next, HRV 3C Protease Solution Kit (Pierce™, 88946) was used to cleave SUMO from the CD19
fusion protein. The protease was removed via Glutathione Agarose (Pierce™, 16100), followed by Ni-NTA
Agarose to remove SUMO. Finally, the protein was stored in size exclusion buffer (25 mM NaH2PO4 and
150 mM NaCl at pH 7.5) and frozen in suitable aliquots at –80°C.

The anti-CD19 antibody (clone SJ25C1) was purchased from BioLegend (cat no. 363001).

Production of PEG coupled phosphorylated peptide antigens and antibody. Phosphorylated peptide
antigens were a custom commercial order (Protein Peptide Research Ltd, UK) with the following sequences:
Bio-(PEG)3-SVPEQTEY*ATIVFPSG (PEG3) and Bio-(PEG)28-SVPEQTEY*ATIVFPSG (PEG28), where
Bio indicates biotin, PEGX is X repeats of polyethylene glycol, and * indicates phosphorylation.

The anti-phosphotyrosine antibody (clone PY20) was purchased from Absolute Antibody (Ab00294-
1.1).

Surface plasmon resonance

Monovalent SPR for RBD antibodies. A BIAcore 8K (Cytiva) was used to measure the affinity and the
kinetics of soluble RBD to immobilised antibody. Approximately 200 RU of antibody was captured onto
a Protein A Series S Sensor Chip (Cytiva) along with 200 RU of an influenza mAb AG7C in a reference
flow cell. Multi cycle kinetic analysis of binding was undertaken, using a two-fold serial dilution of RBD-H
in HBS-P+ buffer (Cytiva) along with a reference sample containing only HBS-P+ buffer. Measurements
were made with injection times of 90 s (30 µl/min) and dissociation times of 180 s or 600 s (30 µl/ml) at
37◦C. Regeneration of the sensor chip was performed with 10 mM Glycine-HCl, pH 1.7 for 30s (30 ul/min)
between RBD-H concentrations. For analysis, the sensograms were double reference subtracted and fitted
with a 1:1 binding model using the BIAcore Insight Evaluation Software version 2.0.15.12933 (Cytiva).

Monovalent SPR for CD19 antibodies. Monavalent SPR of CD19 antibodies was conducted on BI-
Acore T200 instrument (GE Healthcare Life Sciences). The experiment was run at 37 ◦C, HBS-EP was
used as running buffer. An Fc capture chip was produced by amine coupling of anti-mouse IgG antibody
to a CM5 chip using a commercial Fc Capture Kit (GE Healthcare). First, the chip was conditioned with
7 conditioning cycles using HBS-EP buffer. Next, the anti-CD19 antibody was injected for either 120 s or
900 s, resulting in immobilisation levels of 500 RU and 1000 RU respectively. For the control flow cell, the
BBM1 antibody was immobilised to matching levels. CD19-SpyCatcher was injected for 150 s, followed
by a dissociation phase of 450 s at a flow rate of 50 µl/min. After each cycle, the chip was regenerated with
10 mM Glycine-HCl, pH1.7 for 90 s, which removed both CD19 and anti-CD19 antibody from the chip.
This was followed by the re-immobilisation of anti-CD19 antibody. Buffer was injected after every second
cycle. For data analysis, the SPR sensogram was double-referenced against an empty flow cell and buffer
injections. Subsequently, we fitted the dissociation phase with a 1:1 binding model to obtain the mean koff
value. Next, the mean kon value was determined by fitting the association phase with a 1:1 binding model,
while constraining the koff parameter to the mean koff value determined in the first fitting step.
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Bivalent SPR. A BIAcore T200 instrument (GE Healthcare Life Sciences) at 37◦C and and a flow rate
of 100 µl/min. Running buffer was HBS-EP. Monovalent Streptavidin-SpyCatcher was coupled to CM5
sensor chips using an amino coupling kit (GE Healthcare Life Sciences) to near saturation, typically around
7000 - 8000 response units (RU). Antigens, either biotinylated (RBD) or containing a SpyTag (CD19), were
injected into the experimental flow cells (FCs) for different lengths of time to produce desired immobilisation
levels (typically 20 - 70 RU). The concentration of immobilised antigen was calculated using an empirical
factor to convert the immobilisation level to a molar concentration. We used the formula: molar conc.
= immobilisation level / (conversion factor × molecular weight). The conversion factor was previously
determined to be 149 RU per g/liter (36). Usually, FC1 was kept blank as a reference for FC2, FC3,
and FC4. Excess streptavidin was blocked with two 40 s injections of 250 µM biotin (Avidity). Before
antibody injections, the chip surface was conditioned with 2 injections of the running buffer. Dilution series
of antibodies were injected simultaneously in all FCs, starting with the lowest concentration. Antibodies
were injected for 150s followed by a buffer injection of 450s at a flow rate of 100 µl/min. After each
cycle, the chip surface is regenerated with 3M MgCl (Cytiva) for 90 s at 30 µl/min to remove all remaining
bound antibodies. A buffer injection was included after every 2 or 3 antibody injections; all binding data
were double-referenced by subtracting the response of the control flow cell and the closest buffer injection.
Before running the high-throughput SPR experiment, we conducted an initial screen to determine whether
the surface can be regenerated after each antibody injection. For this, each antibody was injected at a
concentration of 50 nM with an association phase of 150 sec followed by a dissociation phase of 475 sec
before injecting 3M MgCl (Cytiva) for 90 sec at a flow rate of 30 µl/min followed by a buffer injection. For
the high-throughput SPR experiments, up to 32 antibodies at 3 concentrations (typically between 30 and 100
nM) each were injected in sequence over the SPR chip surface. Buffer was injected after every third cycle.

ODE-based monovalent model

As illustrated in Fig. 1A, the monovalent ODE model assumes soluble antigen can reversibly bind to im-
mobilised antibodies. Let [Ag] denote the concentration of antigen, [Ab] the concentration of antibodies
immobilised on the SPR chip, A the number of unbound antibody arms, and B the number of bound anti-
body arms. The monovalent reaction model is then

A
kon[Ag]−−−−⇀↽−−−−

koff

B

with the corresponding mass action ODE model of

dA

dt
= −dB

dt
= −kon[Ag]A+ koffB.

All antibody arms are initially unbound, giving the initial condition that A(0) = 2[Ab] and B(0) = 0.

The monovalent SPR experiment is modelled by an association phase (t = 0 to t = ts) followed by a
dissociation phase after the instantaneous removal of antigen in solution at time ts (i.e. setting [Ag] = 0 at
ts). The measured monovalent SPR response trace, R(t), is proportional to B(t). Analytically solving the
ODE model we then have that

R(t) =

{
Cp

2kon[Ag][Ab]
kon[Ag]+koff

(
1− e−(kon[Ag]+koff)t

)
, t ≤ ts,

R(t−s )e
−koff(t−ts), t > ts,

where Cp denotes the constant of proportionality between R(t) (in units of RU) and B(t) (in units of
concentration). The monovalent model for R(t) then has three unknown parameters to fit, Cp, kon, and koff.
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ODE-based bivalent model

As illustrated in Fig. 1A, the bivalent ODE model assumes soluble antibodies can reversibly bind to immo-
bilised antigens. We let [Ab] denote the concentration of antibodies in the solution, [Ag] the concentration of
antigen immobilised on the SPR chip, A the concentration of these antigen that are not bound to an antibody,
B the concentration of antibody-antigen complexes in which the antibody has one arm bound (i.e. is ”singly-
bound”), and C the concentration of antibodies with both arms bound to antigen (i.e. ”doubly-bound”). The
well-mixed bivalent reaction model is then

A
2kon[Ab]−−−−−⇀↽−−−−−

koff

B

A+B
kon,b−−⇀↽−−
2koff

C

with the corresponding mass action ODE model of

dA

dt
= −2kon[Ab]A+ koffB − kon,bAB + 2koffC

dB

dt
= 2kon[Ab]A− koffB − kon,bAB + 2koffC

dC

dt
= kon,bAB − 2koffC,

and the initial conditions that A(0) = [Ag], B(0) = 0, C(0) = 0. Note that here kon and koff represent the
same physical rates used in the monovalent ODE model.

As with the monovalent SPR experiments, the bivalent SPR experiment is modelled by an association
phase (t = 0 to t = ts) followed by a dissociation phase after the instantaneous removal of antibodies in
solution at time ts (i.e. setting [Ab] = 0 at ts). The measured SPR response, R(t), is proportional to the
amount of antibodies bound to immobilised antigen, and we assume R(t) = Cp(B(t) + C(t)). We then
obtain a final model with four parameters to fit, kon, koff, kon,b, and a constant of proportionality Cp. Note,
this model assumes that a singly-bound antibody can bind any free antigen on the surface (i.e. is ’well-
mixed’) and therefore, does not contain a molecular reach parameter. The model was fit to bivalent SPR
data for FD-11A binding RBD (Fig. 1A-C) using lsqcurvefit in Matlab (Mathworks, MA).

Particle-based bivalent model

The particle-based model modifies the bivalent ODE model by explicitly resolving the position and chemical
state (i.e. free or antibody bound) of each individual antigen that is immobilised on the SPR chip. We model
a small portion of the SPR chip by a cube with side lengths L containing NAg antigens that are uniformly
(randomly) distributed.

Our model is given in terms of stochastic jump processes for the states of each individual antigen or
antigen-antibody complex. Let xi denote the position of the ith antigen within the domain, i = 1, . . . , NAg.
We denote by Ai(t) ∈ {0, 1} the stochastic process that is one if the ith antigen is not bound to any
antibody, and zero otherwise. Similarly, Bi(t) ∈ {0, 1} will denote the stochastic process that is one if
the ith antigen is bound to an arm of an antibody for which the other arm is unbound, and zero otherwise.
Finally, Cij(t) ∈ {0, 1} will denote the stochastic process that is one if the antigens at xi and xj are both
bound to the same antibody, and zero otherwise.

21



Huhn et al

We let ε label the reach of the reaction for the free arm of a singly-bound antibody-antigen complex to
bind a nearby free antigen. We assume the reaction can occur with rate kon,b when the two antigen involved
in the reaction are separated by less than ε. For antigens at xi and xj , the rate of the reaction is given by a
Doi interaction model (37–39) as kon,b1[0,ε](xi − xj), where

1[0,ε](xi − xj) =

{
1, |xi − xj |p ≤ ε,

0, |xi − xj |p > ε

represents the indicator function of the interval [0, ε], and |xi − xj |p represents the periodic distance between
xi and xj .

Our overall reaction model is then

Ai
2kon[Ab]−−−−−⇀↽−−−−−

koff

Bi, i ∈ {1, . . . , NAg}

Ai +Bj

kon,b1[0,ε](xi−xj)−−−−−−−−−−→ Cmin{i,j},max{i,j}, i ∈ {1, . . . , NAg}, j ∈ {1, . . . , i− 1, i+ 1, . . . , NAg},

Cij
koff−−→ Ai +Bj , i ∈ {1, . . . , NAg}, j ∈ {i+ 1, . . . , NAg},

Cij
koff−−→ Aj +Bi, i ∈ {1, . . . , NAg}, j ∈ {i+ 1, . . . , NAg},

where kon and koff should represent the same rates as in the monovalent and bivalent ODE models. The
initial condition for each stochastic process is then Ai(0) = 1 for all i, Bi(0) = 0 for all i, and Cij(0) = 0
for all i and j.

The corresponding mathematical model for the evolution of the stochastic jump processes is given by
Kurtz’s time-change representation (40, 41). Equivalently, the probability the processes are in a given state
can be described by the Chemical Master Equation (CME). Let I = {(i, j) | i ̸= j, i = 1, . . . , NAg, j =

1, . . . , NAg} denote the indices of all possible Ai and Bj pairs, and Î = {(i, j) | i = 1, . . . , NAg, j = i +
1, . . . , NAg} denote the indices of all distinct antigen pairs. For the time-change representation each possible
reaction is associated with a unit rate Poisson counting process, labelled by {Y1,i(t)}

NAg
i=1 , {Y2,i(t)}

NAg
i=1 ,

{Y3,i,j(t)}(i,j)∈I , and {Y4,i,j(t)}(i,j)∈I . We can then represent the stochastic processes for the total number
of occurrences of the Ai → Bi, Bi → Ai, Ai +Bj → Cmin{i,j},max{i,j}, and Cmin{i,j},max{i,j} → Ai +Bj

reactions respectively as

N1,i(t) = Y1,i

(
2kon[Ab]

∫ t

0
Ai(s

−) ds

)
, i ∈ {1, . . . , NAg}

N2,i(t) = Y2,i

(
koff

∫ t

0
Bi(s

−) ds

)
, i ∈ {1, . . . , NAg}

N3,i,j(t) = Y3,i,j

(
kon,b1[0,ε](xi − xj)

∫ t

0
Ai(s

−)Bj(s
−) ds

)
, (i, j) ∈ I

N4,i,j(t) = Y4,i,j

(
koff

∫ t

0
Cmin{i,j},max{i,j}(s

−) ds

)
, (i, j) ∈ I.
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Our particle model is then given by

Ai(t) = 1−N1,i(t) +N2,i(t)−
∑
j ̸=i

N3,i,j(t) +
∑
j ̸=i

N4,i,j(t), i ∈ {1, . . . , NAg}

Bi(t) = N1,i(t)−N2,i(t)−
∑
j ̸=i

N3,j,i(t) +
∑
j ̸=i

N4,j,i(t), i ∈ {1, . . . , NAg}

Cij(t) = N3,i,j(t) +N3,j,i(t)−N4,i,j(t)−N4,j,i(t), (i, j) ∈ Î.

As with the ODE models, the particle-model includes an association phase from t = 0 to t = ts,
followed by a dissociation phase after the assumed instantaneous removal of all antibodies in solution at the
switching time ts (i.e. setting [Ab] = 0 at ts). The measured SPR response, R(t), is proportional to the
average number of antibodies bound to immobilised antigen. That is, let

B(t) =

NAg∑
j=1

Bj(t), C(t) =
∑

(i,j)∈Î

Ci,j(t)

be the stochastic processes for the number of singly- and doubly-bound antibodies in the system at time t.
Denoting averages by E[·], we assume that

R(t) =
Cp

NAg
(E[B(t)] + E[C(t)]) ,

where Cp denotes the constant of proportionality converting model concentrations to experimental response
units. Note, as only the antibody concentration is varied during a single bivalent SPR experiment, NAg
remains constant and we are simply defining a re-scaled constant of proportionality compared to the ODE
cases. The resulting model then has five unknown parameters to fit, kon, koff, kon,b, ε, and Cp.

Exact realizations of the system state, i.e.
(
{Ai(t)}

NAg
i=1 , {Bi(t)}

NAg
i=1 , {Cij(t)}(i,j)∈Î

)
, can be generated

by any of the many Stochastic Simulation Algorithms (SSAs) (17, 42) (also know as Gillespie methods,
Kinetic Monte Carlo methods, or Doob’s method). For all forward simulations we use an optimized imple-
mentation of the Gibson-Bruck Next Reaction Method (NRM) SSA (43).

Particle-model surrogate

While SSA simulations of the particle model (i.e. R(t)) can be directly fit to bivalent SPR data, we found
their computational expense to be the bottleneck in our experimental workflows. To avoid parameter esti-
mation becoming a rate-limiting step, we developed a surrogate model that approximated the particle-model
but allowed for rapid data fitting and hence, parameter estimation.

We first note that from the perspective of the particle model, the antibody solution concentration, [Ab],
only enters in setting an effective transition rate, i.e. probability per time, of k̂on ≡ 2kon[Ab] for an individual
Ai to become a Bi. As such, in the surrogate model we treat this as one effective parameter. We then denote
by

θ = (log10(k̂on), log10(koff), log10(kon,b), ε, log10(Cp)) [1]

the vector of particle model parameters to estimate from SPR traces, where we have log transformed the
transition rates for each possible reaction.
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Let
Rp(t;θ) =

Cp

NAg
(E[B(t)] + E[C(t)])

label the particle model’s predicted SPR trace for a given set of parameters. The surrogate model is a
function of t and θ defined by

Rs(t;θ) = CpS(t, θ1, θ2, θ3, θ4), [2]

with S(t, θ1, θ2, θ3, θ4) representing the surrogate’s predicated SPR response for Cp = 1. S is given by a
five-dimensional linear interpolation table over (t, θ1, θ2, θ3, θ4). For all surrogates in this work, we fixed
NAg = 1000 and [Agsur] = 125µM. The domain length was then chosen to be consistent with this density
of antigen, i.e. for NA denoting Avogadro’s number, L satisfied

NAg

L3
= [Agsur]×NA × 10−30 mol

(nm)3µM
.

To construct the surrogate, (θ1, θ2, θ3, θ4) were each varied over a range of values [
¯
θi, θ̄i], with samples of

each θi uniformly spaced. That is, if parameter θi was sampled at Mi values, they were chosen as

θji = ¯
θi + j∆θi, j = 0, . . . ,Mi − 1,

with ∆θi = (θ̄i −
¯
θi)/(Mi − 1). The sampled reaction transition rates were then uniformly spaced in log

space. We similarly partitioned time such that t ∈ [0, T ] where T determined the time interval over which
to fit the SPR data. We again used uniform spacing in time, tj = j∆t, for ∆t = T/Mt. For the surrogate
used in this work we chose (M1,M2,M3,M4) = (42, 40, 30, 30), ∆t = 1s, T = 600s, and Mt = 600. ts
was chosen to be 150s, consistent with the SPR protocol.

With Cp = 1, for each possible combination of parameters, θ = (θj11 , θj22 , θj33 , θj44 , 1), we then saved the
values

S(tk, θ
j1
1 , θj22 , θj33 , θj44 ) = Rp(tk;θ), k = 0, . . . ,Mt

in a five-dimensional lookup table. Estimating Rp(tk;θ) requires averaging SSA simulations of the particle
model. Let Bn(t) and Cn(t) denote the sampled values of B(t) and C(t) in the nth simulation, n =
1, . . . , Nsims, with

Rn
p (tk;θ) =

1

NAg
(Bn(tk) + Cn(tk))

the corresponding response. We then approximated

Rp(tk;θ) ≈
1

Nsims

Nsims∑
n=1

Rn
p (tk;θ).

Our general protocol was to average over at least Nsims = 15 SSA samples, continuing to add SSA samples
until either the estimated standard error of the samples, {Rn

p (tk;θ)}
Nsims
n=1 , was below .01 of the sample mean

at all tk, or Nsims = 250 SSA samples were reached.

Given the table {S(tk, θj11 , θj22 , θj33 , θj44 )}(Mt+1,M1,M2,M3,M4)
(k,j1,j2,j3,j4)=(1,1,1,1,1), S(t, θ1, θ2, θ3, θ4) for t ∈ (0, T ) and all

θj ∈ (
¯
θj , θ̄j) could then be evaluated by linear interpolation of the bracketing tabulated values. In practice,

we evaluated the surrogate at general time and parameter values using the BSpline(Linear()) option
from the Interpolations.jl library (44). For the sizes we used, (Mt+1,M1,M2,M3,M4) = (601, 42, 40, 30, 30),
the table contained model responses for 1,512,000 parameter combinations, and required approximately
7.3GB of memory to store. Surrogates were generally constructed in a few hours using 500-2000 cores on
the Boston University Shared Computing Cluster.
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Particle-model data fitting

Estimates for the log transformed parameters θ, defined in Eq. [1], were generated via minimization of the
squared error between surrogate predictions and experimental SPR responses for varying levels of [Ab].
Suppose I SPR traces are being simultaneously fit (e.g. traces with different antibody concentrations in-
jected over the same surface), with R(i)(t) labelling the ith SPR response trace for an experiment with
antibody concentration [Ab(i)]. We assume a fixed and known antigen concentration, [Ag], when simultane-
ously fitting multiple SPR traces generated using different antibody concentrations injected over the same
surface. The experimental traces are ordered such that

[Ab(1)] ≤ [Ab(2)] ≤ · · · ≤ [Ab(I)].

Finally, given a current estimate for θ arising during optimization, we define

θ(i) ≡

(
θ1 + log10

(
[Ab(i)]

[Ab(1)]

)
, θ2, θ3, θ4, θ5

)

=

(
log10

(
k̂on

[Ab(i)]

[Ab(1)]

)
, log10(koff), log10(kon,b), ε, log10(Cp)

)
.

The overall loss function we then minimized was

L(θ) =

I∑
i=1

Mt∑
k=0

(
R(i)(tk)−Rs(tk;θ

(i))
)2

,

where Rs(t;θ) is the surrogate response defined by Eq. [2]. In practice we minimized this loss using
the XNES natural evolution optimizer from BlackBoxOptim.jl via the Optimization.jl meta-package (45,
46). All optimization related parameters were left at their default values except the maximum number of
iterations, which was increased to 5000. As XNES is a stochastic optimizer, we generally applied it several
times and selected the estimated parameter set across all runs having the minimal loss as the consensus
estimate. For more details, see the section on ”Data analysis for high-throughput bivalent SPR”. Fitting
a single SPR dataset (multiple concentrations of a single antibody over a single antigen density) required
approximately 10 minutes on a standard laptop.

As described in the previous section, the surrogate was constructed for a fixed concentration of antigen.
To avoid producing a new surrogate for each experiment, we conjectured that once our particle model system
was of sufficient size (i.e. sufficiently large number of antigens for a fixed antigen concentration), the antigen
concentration effectively set the average number of antigens that were within reach. In this way, we could fit
SPR data generated with any antigen concentration using a single surrogate (produced with a single antigen
concentration) but would need to transform the fitted reach based on the experimental antigen concentration.
In other words, the biophysical reach (εphys) can be calculated from the fitted reach (εsur = θ4) by enforcing
that the average number of antigens within reach in the surrogate model and in the SPR experiment are the
same,

4

3
πε3sur[Agsur] =

4

3
πε3phys[Ag].

We empirically confirmed that the model produced the same predicted SPR traces at different antigen densi-
ties ([Ag]=1, 10, and 100 µM) provided that the physical molecular reach (εphys) was decreased according to
the above equation (Fig. S1). Therefore, the relationship between the fitted parameters θ and the biophysical
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parameters are as follows,

kon =
10θ1

[Ab(1)]
=

k̂on

[Ab(1)]
, koff = 10θ2 , kon,b = 10θ3 ,

εphys = θ4

(
[Agsur]

[Ag]

)1/3

, Cp = 10θ5 .

[3]

These represent the final biophysical parameter estimates reported in this work.

Particle-model antibody binding potency predictions

To predict the concentration of antibody required to bind 50% of antigen (antibody binding potency), the
particle model is simulated using the previously mentioned Next Reaction Method-based approach. The
only modification to the model is that we used a 2D square with sides of length L to represent the 2D viral
surface. As before, antigens are assumed to be uniformly (randomly) distributed in a 2D region with NAg
set to 1000 and L chosen to enforce a specified antigen density.

For each antibody, the model was simulated with its fitted binding parameters (kon, koff, kon,b, and the
molecular reach ε) for different antigen and antibody concentrations to a time of 60 minutes. For each
antibody concentration we averaged 20 independent simulations to estimate the average number of unbound
antigens at 60 minutes. The resulting dose-response curves for the fraction of unbound antigen (Agunbound)
versus antibody concentration ([Ab]) were fit with an inhibitory Hill model (n < 0) to determine IC50,

Agunbound =
1

1 +

(
IC50

[Ab]

)n . [4]

Worm-like-chain (WLC) model to estimate size of PEG-coupled antigen

The worm-like-chain (WLC) is a widely used polymer model that has previously been applied to PEG
polymers (47). The model provides an estimate for the mean end-to-end distance of the polymer as follows:
2
√
NPEGlclp where NPEG is the number of PEG repeats, lc is the contour length of each repeat (0.4 nm),

and lp is the persistence length of PEG (0.4 nm (47)). The WLC model predicts a mean length of 0.69 nm
for PEG3 and 2.1 nm for PEG28 or a difference in length of 1.41 nm. The predicted increase in molecular
reach when an antibody binds PEG28 instead of PEG3 would then be twice this difference to account for
the two bound antigens involved in antibody binding (2.82 nm, Fig 2C).

Molecular dynamics

Construction of full-length all-atom antibody/RBD complex structures. The PDB structure (1HZH) of
a full-length IgG1 antibody was rebuilt and minimized in CHARMM35 (48) based on SEQRES records to
serve as a template for rebuilding of full-length antibodies specific for RBD. The crystal structures of the
Fab/RBD complexes used are listed in Table S1. Each RBD structure was rebuilt to contain all residues
of the N-terminal AviTag and signal sequence (24 residues total after cleavage) used in SPR experiments
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fused to RBD residues 331-526 (196 residues) resulting in a final construct of 220 residues in all cases.
Any missing residues in the light or heavy chains of the Fabs were also rebuilt and all rebuilt sections of
Fabs and RBD minimized in CHARMM35. Two copies of each Fab/RBD complex were then aligned to
the 1HZH all-atom model in Chimera v1.16 (49) using the MatchMaker tool based on the heavy and light
chain only, with the relative orientations of the RBD and Fab structures maintained. Heavy chains from
these aligned structures were then merged with those of 1HZH based on MUSCLE (50) alignments of their
sequences and inspection of the aligned structures. The three residues on either side of the new bond were
minimized in CHARMM35 with all other atomic positions held fixed. The final structure after 1,000 steps
of unconstrained minimization in vacuo in Amber FF14SB (51) with OpenMM v7.5 (52) was accepted as
the final all-atom structure. We note that 1HZH contains one disulfide bond between the two heavy chains
in the hinge region rather than the usual two. We chose not rebuild the second disulfide bond so as not to
distort the overall structure and because the disulfide that limits the extension of the hinge is in place. The
lengths of all chains within each antibody in the rebuilt full-length models are listed in Table S2.

Construction of topology-based coarse-grain models. Coarse-grain models were parameterized fol-
lowing a previously published protocol that represents each amino acid as a single interaction site centered
at the Cα coordinates of each atom. The potential energy of a conformation within this model is given by

E =
∑
i

kb (ri − r0)
2+
∑
i

4∑
j

kφij (1 + cos [jφi − δij ])+
∑
i

−1

γ
ln
{
exp

[
−γ
(
kα (θi − θα)

2 + εα

)]

+exp
[
−γkβ (θi − θβ)

2
]}

+
∑
ij

qiqje
2

4πε0εrrij
exp

[
−rij
lD

]
+

∑
ij∈{NC}

ϵNC
ij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+4

(
σij
rij

)6
]
+

∑
ij /∈{NC}

ϵNN
ij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+ 4

(
σij
rij

)6
]
. [5]

These forcefield terms, which represent contributions from bonds, dihedrals, angles, electrostatics, na-
tive contacts, and non-native contacts, have been described in detail previously (53). The strength of native
contacts within this coarse-grain model is determined by the Lennard-Jones-like well depths for the native
contact term. The well depth, ϵNC

ij , is computed as ϵNC
ij = ηijϵHB + ηϵij , in which ηij is the number

of hydrogen bonds between residues i and j, ϵHB = 0.75 kcal/mol, ϵij is the well-depth taken from the
Betancourt-Thirumalai (54) pairwise potential for a contact between residues of types i and j, and η is a
scaling factor that increases the effective well depths. Increasing the value of η linearly increases the stabil-
ity of all native contacts to which it is applied. Values of η were selected individually for each domain and
interface within the antibody-RBD complexes. We note that disulphide bonds are treated as harmonic bonds
with kb = 20 kcal/(mol×Å2) rather than as native contacts.

Selection of η values for antibody domains and interfaces. All coarse-grain simulations were per-
formed in OpenMM v7.5 using the LangevinMiddleIntegrator (55) with an integration time step of 15 fs, a
friction coefficient of 0.050 ps−1, and an absolute temperature of 298 K. Values of η were selected based
on a previously published training set (56). To limit the number of domains and interfaces that required
simultaneous parameter tuning, we used the same set of η values for all domains and interfaces within each
antibody and for each RBD monomer (Table S3). The intra-domain values of η were taken in each case as
the largest value from a training set (see (57) Table S5 ). Likewise, the largest training set value for interfaces
was used for the HC1—LC1, HC2—LC2, and HC1:HC2 interfaces. The HC1—LC2 interface, which likely
represents a crystal packing interface, was assigned the training set average value of 1.507. Simulations of
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FD-11A in isolation were performed using the values of η in Table S3 but with the RBD representations
deleted.

Coarse-grain steered molecular dynamics simulations of antibody molecular reach. Initial struc-
tures for steered molecular dynamics were generated by aligning the coarse-grained RBD-antibody-RBD
complexes such that one RBD Lys15 (i.e., the residue that is biotinylated and bound to streptavidin in the
experiment) was at the coordinate system origin and the other on the positive x-axis. A spherical harmonic
restraint with force constant 50 kcal/(mol×Å2) was applied to the Lys15 at the origin to hold it in place dur-
ing pulling. A second spherical harmonic restraint with force constant 1 kcal/(mol×Å2) was applied to the
second Lys15 residues to serve as the trap for steered molecular dynamics. Flat-bottom Root Mean Square
Deviation (RMSD) restraints with force constant kRMSD = 50 kcal/(mol×Å2) and RMSD threshold of 5
Å were applied to residues in Fab1, Fab2, the Fc, as well as the globular portions of each RBD monomer
to prevent overall unfolding while allowing structural fluctuations. Only the RBD linkers, antibody hinge,
and epitope—paratope interfaces were left unrestrained. Each trajectory was then equilibrated for 1.5 ns to
allow the coordinates to randomize. After equilibration, the harmonic restraint on the second Lys15 residue
was pulled with a constant velocity of 1 nm/ns along the positive x-axis to a total displacement of +30
nm from its original position over the course of 30 ns. A total of 50 statistically independent trajectories
were run for each of the six antibodies and each of seven different epitope—paratope interface η values,
η = 1.000, 1.250, 1.500, 1.750, 2.000, 2.250, 2.500 for a total of 2,100 statistically independent trajectories
(total simulation time 66 µs). The molecular reach was computed from each trajectory as longest distance
at which both epitope—paratope interfaces have a non-zero fraction of native contacts, Q. Larger values
of η sometimes result in unfolding of RBD or IgG domains during pulling due to the increased interaction
strength at the epitope—paratope interfaces. We therefore applied a filter to discard trajectories that ever
have a Fab or RBD RMSD > 10 Å. Varying this threshold value to 8 or 15 Å was not found to strongly
influence results. The mean maximum Lys15-Lys15 distance was then computed by averaging the value of
those trajectories that remain reasonably well folded. The molecular reach estimate from the simulations
was taken to be the maximum mean value across all η values.

A sample of the MD simulations can be found on figShare (58)

SARS-CoV-2 neutralisation

Neutralisation IC50 for the FD-11A antibody was measured with a microneutralization assay as previously
described (59). Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-
CoV-2 variants of concern. FD-11A was preincubated with SARS-CoV-2 for 60 min at room temperature
before being added to Vero CCL-81 cells. Level of infection was measured by counting the number of
infectious foci.

For anti-RBD antibodies used in the high-throughput SPR experiment, neutralisation IC50 was measured
using a Focus Reduction Neutralization Test as described in (5). Briefly, serially diluted antibody was
incubated with SARS- CoV-2 for 1 hr at 37ºC, afterwards transfered to Vero cell monolayers. The level of
infection was measured using a focus forming assay.
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Data analysis for high-throughput bivalent SPR

In this section we explain the detailed workflow for analysis of the high-throughput bivalent SPR experi-
ments (Fig. 4).

After double referencing the SPR curves for each antibody concentration, we aligned them to the start
of the dissociation phase (setting it to ts = 150s) to improve curve alignment. To eliminate artefacts arising
from the start and end of the association phase (generally large spikes in RU arising from needle motion),
the first 5 seconds of the association phase, the last 4 seconds of the association phase, and the first 5
seconds of the dissociation phase were excluded from the data. We also excluded all SPR curves where the
maximum response across the entire injection was smaller than 6 RU because this minimal binding is within
the systematic error for SPR experiments (typically 1 RU per 100 seconds of injection or 6 RU for our 600
second experiments). Finally, to produce more manageable file sizes we reduced the temporal resolution
from 10 Hz to 1 Hz and this did not impact our results because the kinetics of the SPR traces were much
slower than 1 Hz.

We then fitted the processed data for each antibody using the bivalent Particle-based model (see Particle-
model data fitting section). The antigen and antibody concentrations for each SPR curve were provided
as input parameters for the fitting process. The surrogate model used in fitting contained the following
parameter ranges: log10(kon) ∈ [−5.0, 2.0] with M1 = 42, log10(koff) ∈ [−4.0, 0.0] with M2 = 40,
log10(kon,b) ∈ [−3.0, 1.5] with M3 = 30, and ε ∈ [2, 35] with M4 = 30. During fitting of the surrogate to
SPR data, a box constraint that log10(Cp) ∈ [1.0, 4.0] was used. The fitting process was repeated 100 times,
and the parameters yielding the lowest fitness was recorded. The estimated bivalent model parameters from
the fitting process were converted into the corresponding biophysical parameters according to Eq. [3] using
the experimental antigen concentration. The bivalent SPR data was also fit with the ODE-based monovalent
model (see ODE-based monovalent model section).

Finally, a quality control procedure was introduced to ensure the accuracy of the bivalent binding pa-
rameters. First, we checked that the antigen surface could be regenerated after each antibody injection (7 out
of 80 antibodies could not be removed). Second, we only included data where the particle-model produces
a close fit to the data (12 out of 80 antibodies could not be fit). Third, we only included data where the
particle-model produced a fit that was better than the ODE-based monovalent model. We reasoned that SPR
data that could accurately be fit by the ODE-based monovalent model did not contain information that could
accurately determine bivalent binding (bivalent binding parameters of 16 out of 80 antibodies could not be
determined).

Bivalent SPR data that passed all quality control measures for each antibody were averaged across SPR
experiments. We report the geometric mean for parameters that varied on a logarithmic range in the model
(kon, koff, KD, kon,b) and the mean for the molecular reach that varied on a linear range in the model.

Statistical analysis

Multiple linear regression We fit a one way multiple linear model in Prism (v 9.5.1) with the following
formula:

y = β0 + β1x1 + ...+ βnxn
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where y is the predicted neutralisation IC50 for each antibody, β0 is the y-intercept to fit, (x1, . . . , xn) are the
values for log10(kon), log10(koff), log10(KD), log10(kon,b), ε, and the blocking epitope distance respectively,
and (β1, . . . , βn) are the corresponding regression coefficients for each variable. Models contain either all
variables, or a subset. A Least Squares regression type was used and models were compared using an
Extra-Sum-of-Squares F test.

Data Availability

Source data are provided as a supplementary file. This file contains all of the aligned SPR traces for every an-
tibody experiment in the manuscript. The file also contains a spreadsheet summarising the fitted parameters,
neutralisation potency, epitope, predicted binding potency at different densities, and the exclusion/inclusion
criteria for each antibody.

Code Availability

Codes and tutorials for particle model forward simulation, surrogate construction, and fitting are available
in our MIT-licensed Julia library (60).
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Figure S1: Workflow for fitting the particle-model to bivalent SPR data. (A) A schematic of the particle-
model chemical reactions (left) used to perform simulations of the association and dissociation phase of
antibody binding in bivalent SPR (middle, red traces), which are averaged to produce the predicted SPR
trace for a given parameter set (middle, black traces). These averaged SPR traces are pre-tabulated for
different parameter values (kon, koff, kon,b, reach - ε) using a computing cluster to produce a surrogate for
the particle-model that is used in data fitting (right). (B) The average number of antigens within reach of
an individual antigen depends on the molecular reach and the antigen density. (C) The relationship between
antigen density and molecular reach when the average number of antigens within reach is 0.02 (equation
plotted is from panel b). (D) The spatial distribution of antigen (top) and the corresponding predicted
bivalent SPR traces (bottom) for different antigen concentrations and molecular reach calculated using the
relationship in panel B. The SPR traces are effectively identical as shown by the small residuals (difference
between the indicated SPR curves) confirming that antibody binding depends on the average number of
antigens within reach, which can be achieved by a short reach at high antigen density or a long reach at
low antigen density. Simulations are performed using an antibody concentration of 1 nM with kon = 0.05 µ
M−1s−1, koff = 0.02s−1, and kon,b = 1.0−1.
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Figure S2: The fitted binding parameters for the IgG FD-11A antibody binding RBD determined by fitting
the particle-model to bivalent SPR data are independent of the RBD antigen density. The indicated parameter
is plotted over the RBD antigen density (N = 42). The coefficient of determination (R2) and the p-value for the
null hypothesis that the fitted line and a horizontal line (i.e. no relationship between the binding parameter and RBD
density) produce an equal fit to the data.
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Figure S3: Representative monovalent and bivalent SPR for the indicated IgG1 antibodies binding RBD. (A)
Representative monovalent SPR traces produced by injecting RBD (2000 nM with 2-fold dilutions) over surfaces
immobilised with the indicated antibody. (B) Representative bivalent SPR traces produced by injecting the indicated
antibodies over surfaces immobilised with RBD. Antibodies were injected using a 2-fold dilution series, with a top
concentration of 300 nM, 5 nM, 5 nM, 5 nM, 5 nM for FD-5D, FI-3A, CR3022, EY-6A and REGN10987 respectively.
RBD was immobilised at 7 - 15 µM.
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Figure S4: The particle-model accurately analyses bivalent SPR generated using the CD19 antigen re-
producing the monovalent binding parameters. Data is generated using purified Spytag-CD19 (antigen)
and an anti-CD19 antibody (SJ25C1). (A) Monovalent SPR (top) is produced by injecting Spytag-CD19
over a surface immobilised with SJ25C1 and bivalent SPR (bottom) is produced by injecting SJ25C1 over
a surface immobilised with Spytag-CD19 (through coupling to amine-coupled Spycatcher). The SPR traces
are generated by 2-fold dilution of CD19 starting at 175 nM (top) or by a 2-fold dilution of SJ25C1 starting
at 33 nM (bottom). Representative SPR traces (black) and model fit (red) are shown for 1 out of 2 rep-
resentative experiments. (B) The indicated parameter produced by monovalent or bivalent SPR. (C) The
indicated parameter produced by bivalent SPR.
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Figure S5: The mean distance between the antigen-binding domains of the IgG1 FD-11A antibody is 13 nm.
The FD-11A Fab structure is used to generate a coarse-grain model of the complete IgG1 FD-11A antibody (see
methods) and is used in coarse-grained MD simulations. (A) Ensemble average time series (dark purple) computed
over five independent 1-µs trajectories of the distance between the centres-of-mass of the coarse-grain interaction sites
that form the paratopes on each Fab binding arm (i.e. the distance between the antigen binding domains). The light
purple shaded region indicates the standard error over the five trajectories at each simulation frame. The dotted black
line indicates the distance between the antigen-binding sites in the structure. (B) Histogram of the inter-paratope or
inter-antigen binding domain distances over each of the five independent trajectories. (C) Block averaging analysis
of the merged trajectory indicates a block size of 1,000 frames is suitable. The mean inter-paratope distance is 13.05
± 0.05 nm (error bar is estimated as the block standard error with a block size of 1000 frames). Block averaging
was performed on a merged trajectory consisting of the final 975 ns of the five independent runs. (D) Coarse-grain
structures of the reference structure (left), minimum reach structure from simulations (middle), and maximum reach
structure from simulations (right). The two heavy chains are colored dark and light blue, the two light chains are
colored red and pink, and the interactions sites constituting the paratopes are colored yellow. The dotted black line in
the leftmost structure indicates the distance between the centers-of-mass of the paratopes in the reference state (14.94
nm).
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Figure S6: The fitted binding parameters of an anti-phosphotorysine antibody (PY20) interacting with a small
phosphorylated peptide antigen coupled to PEG3 or PEG28 linker. The indicated parameter from N=9 or N=5
independent experiments for PEG3 and PEG28 coupled phosphorylated peptide antigen, respectively. A t-test with a
Holm-Šı́dák correction for multiple comparison was used to determine p-values.
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Figure S7: The fitted binding parameters for an anti-phosphotorysine antibody (PY20) interacting with differ-
ent densities of a small phosphorylated peptide antigen coupled to PEG3. (A) Representative SPR traces (black)
and particle-based model fits (red) for the PY20 antibody injected over surfaces with the indicated concentration of
PEG3 coupled to a small phosphorylated peptide antigen. The antibody was injected at 8 different concentrations
using a 2-fold dilution from a top concentration of 25 nM. (B) The fitted binding parameters plotted over the density
of the small phosphorylated peptide antigen coupled to the SPR chip surface.
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Figure S8: Estimating the molecular reach of RBD-specific antibodies using coarse-grained molecular dynamic
simulations. (A) A representative coarse-grained MD simulation trajectory for the indiciated antibody (columns)
showing the calculated force along the pulling direction (Fx), the fraction of native contacts for each antigen interface
(Q, interface 1 in pink and 2 in mauve), the RMSD as a function of time during the simulation for Fabs 1 and 2 (blue
and green, respectively), and the RMSD of RBD 1 and 2 (yellow and orange, respectively). (B) The structure from
the trajectories in panel A that produced the maximum distance between the Lys15 residues on RBD (shown below
the structure) whilst the antibody was bound bivalently. This structure was achieved at the time point indicated by
the vertical magenta lines in panel A. (C) The maximum Lys15-Lys15 distance over the interface binding strength
(η) calculated over the set of trajectories where unfolding does not take place during the MD simulations. Error bars
are 95% confidence intervals computed from bootstrapping with 106 independent samples. Missing data points for
CR3022 and FI3A indicate that all trajectories were unfolded. The molecular reach is defined as the maximum Lys15-
Lys15 distance over all η and indicated by the dashed horizontal line.
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reveals similar parameters, including molecular reach. Statistical comparisons were performed using an unpaired
t-test directly (reach) or on log-transformed values (all other parmaeters).
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Figure S10: Quality controls for high throughput analysis of 80 RBD antibodies using bivalent SPR. (A-B) Sur-
face stability of RBD was assessed by injecting FD-11A at the beginning and end of each experiment. Representative
SPR traces of the first and last injection of FD-11A (A) and fraction of FD-11A binding at end of the experiment (B).
The fraction is calculated as the RU at 150 s after injection of highest concentration in the first divided by the last
injection. (C) A summary of the antibodies that passed or failed quality control and hence included or excluded from
the analysis, respectively. (D-G) Examples of antibodies representing the four possible quality control outcomes. (D)
The antibody 170 was included because the particle-model produced a good fit and the monovalent model produced
a poor fit. (E) The antibody 170 displays complete regeneration (included) whereas antibody 280 shows only partial
regeneration (excluded). Partial regeneration can be observed by residual RU after the injection of 3 M MgCl2 for 90
s at the end of each SPR cycle (see arrow). (F) The antibody 264 was excluded because the particle-model produced a
poor fit. (G) The antibody 150 was excluded because the particle-based model (left) and the ODE-based monovalent
model (right) produced an equally good fit.
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Figure S11: The previously introduced epitope taxonomy for RBD-binding antibodies does not stratify the
molecular reach. (A) The previously introduced epitope taxonomy for RBD antibodies based on five regions. Figure
adapted from (5). (B-D) Antibody neutralisation IC50 (B), epitope blocking distance (C), and molecular reach of each
antibody (D) organised by their taxonomic class.
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Figure S12: The predicted antibody binding potency produces absolute agreement with the experimental neu-
tralisation potency at intermediate antigen densities. The particle-based model was used to predict the concentra-
tion of antibody required to bind 50% of antigen (Predicted IC50) to surfaces randomly distributed with the indicated
density of antigen for (A-I) all antibodies or (K-S) the subset of antibodies that bound within 2.37 nm of the blocking
epitope. A linear fit to the log-transformed IC50 values (solid line) is compared to a line of absolute agreement (dashed
black line - slope 1, y-intercept 0) using an F-test for the null hypothesis that the two lines have the same slope and
intercept. A Bonferroni multiple-comparison correction is applied by multiplying each p-value by 11 (number of anti-
gen densities test). (J,T) Display the slope (top) and intercept (bottom) of the fitted line for the 11 different antigen
densities tested.
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Table S1: All-atom model building details

Antibody FAB structure source Chains used (heavy, light, RBD)

FD-11A 7PQZ A, B, E
FD-5D 7PR0 H, L, E

REGN10987 6XDG C, A, E
CR3022 6W41 H, L, C
EY6A 6ZDH H, L, A
FI3A 7PQY H, L, E
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Table S2: RBD-antibody-RBD chain lengths

Antibody Chain Residues

FD-5D

HC1 1-459
LC1 1-221
HC2 1-459
LC2 1-221

RBD1 1-220
RBD2 1-220

FD-11A

HC1 1-457
LC1 1-218
HC2 1-457
LC2 1-218

RBD1 1-220
RBD2 1-220

REGN10987

HC1 1-450
LC1 1-216
HC2 1-450
LC2 1-216

RBD1 1-220
RBD2 1-220

CR3022

HC1 1-449
LC1 1-221
HC2 1-449
LC2 1-221

RBD1 1-220
RBD2 1-220

EY6A

HC1 1-451
LC1 1-215
HC2 1-451
LC2 1-215

RBD1 1-220
RBD2 1-220

FI3A

HC1 1-447
LC1 1-214
HC2 1-447
LC2 1-214

RBD1 1-220
RBD2 1-220
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Table S3: η values for all antibody and RBD domains and interfaces except the epitope—paratope interfaces.
*HC1 and LC2 share a small interface in the 1HZH crystal structure

Identity Structural Class η

HC1 β 2.480
LC1 β 2.480
HC2 β 2.480
LC2 β 2.480

RBD 1 α/β 1.916
RBD 2 α/β 1.916

HC1—LC1 interface - 2.124
HC2—LC2 interface - 2.124
HC1—HC2 interface - 2.124
HC1—LC2 interface* - 1.507
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